首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the reversible manipulation of room temperature ferromagnetism in Fe (5%) doped In2O3 polycrystalline magnetic semiconductor. The X-ray diffraction and photoemission measurements confirm that the Fe ions are well incorporated into the lattice, substituting the In3+ ions. The magnetization measurements show that the host In2O3 has a diamagnetic ground state, while it shows weak ferromagnetism at 300 K upon Fe doping. The as-prepared sample was then sequentially annealed in hydrogen, air, vacuum and finally in air. The ferromagnetic signal shoots up by hydrogenation as well as vacuum annealing and bounces back upon re-annealing the samples in air. The sequence of ferromagnetism shows a close inter-relationship with the behavior of oxygen vacancies (Vo). The Fe ions tend to a transform from 3+ to 2+ state during the giant ferromagnetic induction, as revealed by photoemission spectroscopy. A careful characterization of the structure, purity, magnetic, and transport properties confirms that the ferromagnetism is due to neither impurities nor clusters but directly related to the oxygen vacancies. The ferromagnetism can be reversibly controlled by these vacancies while a parallel variation of carrier concentration, as revealed by resistance measurements, appears to be a side effect of the oxygen vacancy variation.  相似文献   

2.
Observation of room-temperature ferromagnetism in Fe- and Ni-co-doped In2O3 samples (In0.9Fe0.1−xNix)2O3 (0?x?0.1) prepared by citric acid sol-gel auto-igniting method is reported. All of the samples with intermediate x values are ferromagnetic at room-temperature. The highest saturation magnetization (0.453 μB/Fe+Ni ions) moment is reached in the sample with x=0.04. The highest solubility of Fe and Ni ions in the In2O3 lattice is around 10 and 4 at%, respectively. The 10 at% Fe-doped sample is found to be weakly ferromagnetic, while the 10 at% Ni-doped sample is paramagnetic. Extensive structure including Extended X-ray absorption fine structure (EXAFS), magnetic and magneto-transport including Hall effects studies on the samples indicate the observed ferromagnetism is intrinsic rather than from the secondary impurity phases.  相似文献   

3.
Carbon-doped In2O3 thin films exhibiting ferromagnetism at room temperature were prepared on Si (100) substrates by the rf-magnetron co-sputtering technique. The effects of carbon concentration as well as oxygen atmosphere on the ferromagnetic property of the thin films were investigated. The saturated magnetizations of thin films varied from 1.23 to 4.86 emu/cm3 with different carbon concentrations. The ferromagnetic signal was found stronger in samples with higher oxygen vacancy concentrations. In addition, deposition temperature and different types of substrates also affect the ferromagnetic properties of carbon-doped In2O3 thin films. This may be related to the oxygen vacancies in the thin film system. The experiment suggests that oxygen vacancies play an important role in introducing ferromagnetism in thin films.  相似文献   

4.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

5.
This paper reports on the influence of the sintering temperature and atmosphere and transition-metal doping on the magnetic properties of nanocrystalline and bulk In2O3. Undoped nanocrystalline In2O3 is diamagnetic whatever the sintering temperature and atmosphere. All single-phase transition-metal-doped In2O3 samples are paramagnetic, with a paramagnetic effective moment originating from weakly interacting transition metal ions. No trace of ferromagnetism has been detected even with samples sintered under argon, except extrinsic ferromagnetism for samples with magnetic dopant concentrations exceeding the solubility limit.  相似文献   

6.
《Current Applied Physics》2010,10(1):333-336
Observation of room temperature ferromagnetism in Fe doped In2O3 samples (In1−xFex)2O3 (0  x  0.07) prepared by co-precipitation technique is reported. Lattice parameter obtained from powder X software shows distinct shrinkage of the lattice constant indicating an actual incorporation of Fe ions into the In2O3 lattice. X-ray diffraction data measurements show that the entire sample exhibits single phase polycrystalline behavior. SEM micrographs showed the prepared powder was in the range 25–36 nm. SEM EDS mapping showed the presence of Fe and In ions in the Fe doped In2O3 sample. The highest remanence magnetization moment (6.624 × 10−4 emu/g) is reached in the sample with x = 0.03.  相似文献   

7.
《Current Applied Physics》2014,14(6):905-908
Monodisperse indium oxide (In2O3) nanoparticles (NPs) with the average diameter of 11 nm were prepared by a solvothermal method. The In2O3 NPs were characterized by X-ray diffraction, Raman and transmission electron microscopy. The intrinsic nature of ferromagnetism in In2O3 NPs has been established with the experimental observation of magnetic hysteresis loop. Photoluminescence and UV–visible studies were employed to evidence the presence of oxygen vacancies and revealed that the oxygen vacancies contribute to the ferromagnetism. The origin of ferromagnetism in In2O3 NPs may be due to exchange interactions among localized electron spin moments resulting from oxygen vacancies.  相似文献   

8.
Influence of Co doping for In in In2O3 matrix has been investigated to study the effect on magnetic vs. electronic properties. Rietveld refinement of X-ray diffraction patterns confirmed formation of single phase cubic bixbyite structure without any parasitic phase. Photoelectron spectroscopy and refinement results further revealed that dopant Co2+ ions are well incorporated at the In3+ sites in In2O3 lattice and also ruled out formation of cluster in the doped samples. Magnetization measurements infer that pure In2O3 is diamagnetic and turns to weak ferromagnetic upon Co doping. Hydrogenation further induces a huge ferromagnetism at 300 K that vanishes upon re-heating. Experimental findings confirm the induced ferromagnetism to be intrinsic, and the magnetic moments to be associated with the point defects (oxygen vacancies Vo) or bound magnetic polarons around the dopant ions.  相似文献   

9.
The valence band electronic structures of Mn- and/or Fe-doped In2O3, i.e., In2O3:Mn, In2O3:Fe, and In2O3:(Mn, Fe), are investigated by photoemission yield measurements. Significant changes are observed in the threshold energy of photoemission, depending on the doped magnetic ions, which indicates that an additional occupied band appears above the top of the valence band of In2O3 owing to doping with Mn and/or Fe ions. It is confirmed that the order of the threshold energies of photoemission, EPET, is EPET(In2O3:Mn)<EPET(In2O3:(Mn, Fe))<EPET(In2O3:Fe)<EPET(In2O3). To gain a better understanding of these results, first-principles molecular orbital calculations are also carried out, which successfully explain the observed changes in the photoemission threshold energies.  相似文献   

10.
In this work, electron magnetic resonance (EMR) spectroscopy and magnetometry studies were employed to investigate the origin of the observed room-temperature ferromagnetism in chemically synthesized Sn1?x Fe x O2 powders. EMR data clearly established the presence of two different types of signals due to the incorporated Fe ions: paramagnetic spectra due to isolated Fe3+ ions and broad ferromagnetic resonance (FMR) spectra due to magnetically coupled Fe3+ dopant ions. EMR data analysis and simulation suggested the presence of high-spin (S = 5/2) Fe3+ ions incorporated into the SnO2 host lattice both at substitutional and at interstitial sites. The FMR signal intensity and the saturation magnetization M s of the ferromagnetic component increased with increasing Fe concentration. For Sn0.953Fe0.047O2 samples, well-defined EMR spectra revealing FMRs were observed only for samples prepared in the 350–600°C range, whereas for samples prepared at higher annealing temperatures up to 900°C, the FMRs and saturation magnetization were vanished due to diffusion and eventual expulsion of the Fe ions from the nanoparticles, in agreement with data obtained from Raman and X-ray photoelectron spectroscopy.  相似文献   

11.
In this paper, we report investigation of room temperature (RT) ferromagnetism in In2O3 (InO) thin films doped with carbon prepared by the co-sputtering method. InO thin films both undoped and C doped with varied thicknesses in the range of 45 to 80 nm were synthesized on Si substrates with varied C concentrations. The carbon concentration was varied from 1.6 to 9.3 at%. The undoped InO films showed no trace of ferromagnetism. Carbon doped films (InO:C) exhibited ferromagnetism at RT, which was of the orders of 10−5 emu and varied strongly with C concentrations. It is observed that the magnetization reached a maximum value of 5.7 emu/cm3 at 4 at% C. Annealing of the InO:C films in an oxygen environment resulted in a decrease in the magnetization, indicating the crucial role of oxygen vacancies in the films. It is concluded that the oxygen vacancies were important and compete with C substitution for the RT ferromagnetism.  相似文献   

12.
Room temperature ferromagnetism was observed in HfO2, TiO2, and In2O3 films grown on yttrium-stabilized zirconia, LaAlO3, and MgO substrates, respectively. While the magnetic moment is rather modest in the case of In2O3 films, it is very large in the other two cases. Thin film form, which might create necessary defects and/or oxygen vacancies, must be the main reason for undoped semiconducting and insulating oxides to become ferromagnetic. From the results, a serious question arises if a transition-metal doping indeed plays any essential role in producing ferromagnetism (FM) in non-magnetic oxides.  相似文献   

13.
Laser-ablated Co-doped In2O3 thin films were fabricated under various growth conditions on R-cut Al2O3 and MgO substrates. All Co:In2O3 films are well-crystallized, single phase, and room temperature ferromagnetic. Co atoms were well substituted for In atoms, and their distribution is greatly uniform over the whole thickness of the films. Films grown at 550 °C showed the largest magnetic moment of about 0.5 μB/Co, while films grown at higher temperatures have magnetic moments of one order smaller. The observed ferromagnetism above room temperature in Co:In2O3 thin films has confirmed that doping few percent of magnetic elements such as Co into In2O3 could result in a promising magnetic material.  相似文献   

14.
Aluminium oxides doped with 1% 57Fe were prepared by sol-gel method, and annealed for 3 hours at various temperatures between 550°C and 1100°C. Amorphous phases were obtained below 1000°C, and crystalline α–Al2O3 was formed at 1100°C. Although Al2O3 itself shows diamagnetism, the light doping of Fe ions into aluminium oxide induced a very weak ferromagnetism, but the ferromagnetism disappeared by longer annealing. M?ssbauer spectra were composed of paramagnetic Fe2?+? and Fe3?+? species for samples heated below 750°C, and of paramagnetic Fe3?+? above 850°C, in addition to a magnetic sextet and relaxation peaks of Fe3?+?. The magnetic and quadrupole interactions of the sextet and the relaxation peaks and the density functional calculations suggest that the lightly doped Fe3?+? ions are substituted at Al sites in the Al2O3 lattice.  相似文献   

15.
This paper obtains the room temperature ferromagnetism in Sn1 xFexO2 films fabricated by the Sol-Gel method.X-ray diffraction results show that Fe doping inhibits the growth of SnO2 and Fe3+ ions occupy the Sn sites.The measurement of resistance excludes the free carrier inducing ferromagnetism.Moreover,the temperature dependence of magnetization has been better fitted by the Curie-Weiss law and bound magnetic polaron(BMP) theory.An enhancement of ferromagnetism is achieved by annealing the samples with x = 7.1% in H2,and a decrease of oxygen flow rate.All these results prove that the BMP model depending on defects can explain ferromagnetism in diluted magnetic oxides.  相似文献   

16.
α-Fe2O3-In2O3 mixed oxide nanoparticles system has been synthesized by hydrothermal supercritical and postannealing route, starting with (1−x)Fe(NO3)3·9H2xIn(NO3)3·5H2O aqueous solution (x=0-1). X-ray diffraction and Mössbauer spectroscopy have been used to study the phase structure and substitutions in the nanosized samples. The concentration regions for the existence of the solid solutions in the α-Fe2O3-In2O3 nanoparticle system together with the solubility limits of In3+ ions in the hematite lattice and of Fe3+ ions in the cubic In2O3 structure have been evidenced. In general, the substitution level is considerably lower than the nominal concentration x. A justification of the processes leading to the formation of iron and indium phases in the investigated supercritical hydrothermal system has been given.  相似文献   

17.
The electrical and ferromagnetic properties of (In0.9−xTbxSn0.1)2O3 and (In0.99−yTb0.01Sny)2O3 films fabricated by sol-gel method have been investigated. All the films show room temperature ferromagnetism. The magnetic moment per Tb ion of (In0.9−xTbxSn0.1)2O3 films first increases and then decreases with the increasing Tb content. The variation of conductivity with Tb content is coincident with that of the magnetic moment. Furthermore, the conductivity and magnetic moment variations with Sn content y in (In0.99−yTb0.01Sny)2O3 films also have the similar trend. These results imply that the ferromagnetism may originate from the carrier-mediated mechanism.  相似文献   

18.
Samples of SnO2 doped with different amount of Fe (10–20%) and Sb (5–25%) were prepared by sol–gel method. Room temperature ferromagnetism was found to increase as a result of co-doping with Sb, as compared to SnO2 doped only with Fe. 57Fe Mössbauer spectra of almost all samples exhibited two paramagnetic doublets and a small subspectrum referring to magnetic relaxation at room temperature. Only the samples Sn0.65Fe0.2Sb0.15O2???δ and Sn0.85Fe0.1Sb0.05O2???δ with 4 h long annealing time showed well developed sextets and larger magnetic coercivity compared to that of the other samples. The sextet observed was considered to be due to precipitates like Sn doped α-Fe2O3. The results suggest that the origin of the magnetic interactions is enhanced by the presence of magnetic defects, which can interact with the iron ions by free carrier electrons. For the sample with precipitates, the grain boundary defects may play an important role of enhanced ferromagnetism.  相似文献   

19.
We present a systematic study of the structure, magnetization, resistivity, and Hall effect properties of pulsed laser deposited Fe- and Cu-codoped In2O3 and indium-tin-oxide (ITO) thin films. Both the films show a clear ferromagnetism and anomalous Hall effect at 300 K. The saturated magnetic moments are almost the same for the two samples, but their remanent moments Mr and coercive fields HC are quite different. Mr and HC values of ITO film are much smaller than that of In2O3. The ITO sample shows a typical semiconducting behavior in whole studied temperature range, while the In2O3 thin film is metallic in the temperature range between 147 and 285 K. Analysis of different conduction mechanisms suggest that charge carriers are not localized in the present films. The profile of the anomalous Hall effect vs. magnetic field was found to be identical to the magnetic hysteresis loops, indicating the possible intrinsic nature of ferromagnetism in the present samples.  相似文献   

20.
顾建军  孙会元  刘力虎  岂云开  徐芹 《物理学报》2012,61(1):17501-017501
采用直流磁控溅射方法在玻璃基底上制备了不同Fe掺杂浓度的TiO2薄膜, 并对其晶体结构和磁特性进行了研究.在所有掺杂样品中,均观察到了室温铁磁性, 磁性源于Fe离子与其近邻空间分布的空穴相互作用. 在掺杂量为7%的锐钛矿相薄膜中观察到了最大的磁化强度. 随着Fe掺杂浓度的进一步增加, TiO2的晶体结构逐渐由锐钛矿相向金红石相转变,并且磁性减弱. 不同结构的TiO2中Ti–O键长不同,导致替代的磁性Fe离子与空穴的作用强度发生改变, 进而使其磁性发生变化. 关键词: 稀磁半导体 结构相变 铁磁性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号