首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Influence of Co doping for In in In2O3 matrix has been investigated to study the effect on magnetic vs. electronic properties. Rietveld refinement of X-ray diffraction patterns confirmed formation of single phase cubic bixbyite structure without any parasitic phase. Photoelectron spectroscopy and refinement results further revealed that dopant Co2+ ions are well incorporated at the In3+ sites in In2O3 lattice and also ruled out formation of cluster in the doped samples. Magnetization measurements infer that pure In2O3 is diamagnetic and turns to weak ferromagnetic upon Co doping. Hydrogenation further induces a huge ferromagnetism at 300 K that vanishes upon re-heating. Experimental findings confirm the induced ferromagnetism to be intrinsic, and the magnetic moments to be associated with the point defects (oxygen vacancies Vo) or bound magnetic polarons around the dopant ions.  相似文献   

2.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

3.
Observation of room-temperature ferromagnetism in Fe- and Ni-co-doped In2O3 samples (In0.9Fe0.1−xNix)2O3 (0?x?0.1) prepared by citric acid sol-gel auto-igniting method is reported. All of the samples with intermediate x values are ferromagnetic at room-temperature. The highest saturation magnetization (0.453 μB/Fe+Ni ions) moment is reached in the sample with x=0.04. The highest solubility of Fe and Ni ions in the In2O3 lattice is around 10 and 4 at%, respectively. The 10 at% Fe-doped sample is found to be weakly ferromagnetic, while the 10 at% Ni-doped sample is paramagnetic. Extensive structure including Extended X-ray absorption fine structure (EXAFS), magnetic and magneto-transport including Hall effects studies on the samples indicate the observed ferromagnetism is intrinsic rather than from the secondary impurity phases.  相似文献   

4.
The valence band electronic structures of Mn- and/or Fe-doped In2O3, i.e., In2O3:Mn, In2O3:Fe, and In2O3:(Mn, Fe), are investigated by photoemission yield measurements. Significant changes are observed in the threshold energy of photoemission, depending on the doped magnetic ions, which indicates that an additional occupied band appears above the top of the valence band of In2O3 owing to doping with Mn and/or Fe ions. It is confirmed that the order of the threshold energies of photoemission, EPET, is EPET(In2O3:Mn)<EPET(In2O3:(Mn, Fe))<EPET(In2O3:Fe)<EPET(In2O3). To gain a better understanding of these results, first-principles molecular orbital calculations are also carried out, which successfully explain the observed changes in the photoemission threshold energies.  相似文献   

5.
Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when a magnetic field is applied parallel to the sample plane.By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy,Ti3+-V O defect complexes(or clusters) have been identified in annealed crystals at a high vacuum.We elucidate that the unpaired 3d electrons in Ti3+ ions provide the observed room-temperature ferromagnetism.In addition,excess oxygen ions in the TiO2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments.  相似文献   

6.
Ba(Ti0.3Fe0.7)O3 ceramic was prepared by solid-state reaction and post-annealed in vacuum and oxygen, respectively. The as-prepared and annealed samples are all single-phase, crystallizing in a 6H-BaTiO3-type hexagonal perovskite structure. Room-temperature ferromagnetism is exhibited in all ceramics. For the as-prepared sample, the super-exchange interactions of Fe3+ in different occupational sites (pentahedral and octahedral sites) are expected to produce the ferromagnetism observed. After annealing in vacuum, the magnetization is reduced while the exchange mechanism remains unchanged. On the contrary, O2 annealing can effectively enhance the magnetization due to the presence of Fe4+, an unusual valence for iron. The simultaneous presence of Fe3+ and Fe4+ allows new exchange mechanism responsible for the ferromagnetic interaction. The exchange couplings of Fe ions with mixed valences (Fe3+ and Fe4+) determine the magnetic behavior.  相似文献   

7.
The effect of W co-doping on the optical, magnetic and electrical properties of Fe-doped BaSnO3 has been studied. Polycrystalline BaSnO3, BaSn0.96Fe0.04O3 and BaSn0.95Fe0.04W0.01O3 samples were prepared using solid state reaction. In the analysis of powder X-ray diffraction patterns, the samples were found to be free of secondary phases. Diffuse reflectance spectra evidenced the substitution of Fe and W for Sn in the host BaSnO3. Micro-Raman spectra confirmed the existence of oxygen vacancies in the samples. Upon W-1% co-doping, the ferromagnetic character of Fe-4% doped BaSnO3 is suppressed drastically and its Curie temperature is reduced to 310 K from 462 K. The existence of F-centers and ferromagnetic interactions at room temperature is evidenced by the electron paramagnetic resonance and ferromagnetic resonance signals observed in the electron spin resonance spectra of the undoped and Fe-4% doped, (Fe-4% and W-1%) co-doped BaSnO3 samples respectively. Suppression of ferromagnetism upon W co-doping is due to the fact that each W6+ ion donates two electrons to the host lattice and it reduces the number of oxygen vacancies that are essential for ferromagnetism to exist in the Fe-doped BaSnO3 samples.  相似文献   

8.
Fe-doped In2O3 powders were prepared using the sol–gel method. Solubility of Fe ions in the In2O3 host compound reached up to 50%. Lattice constant decreased linearly as Fe doping concentration increased, indicating that Fe ions were incorporated into the host lattice and occupied the In sites. Ferromagnetism could be obtained from the samples with carbothermal annealing. The dependence of ferromagnetism on the carbon dosage was observed. The greater the carbon dosage, the higher the concentration of oxygen vacancies (Vo) created, and the more robust the ferromagnetism.  相似文献   

9.
《Current Applied Physics》2014,14(6):905-908
Monodisperse indium oxide (In2O3) nanoparticles (NPs) with the average diameter of 11 nm were prepared by a solvothermal method. The In2O3 NPs were characterized by X-ray diffraction, Raman and transmission electron microscopy. The intrinsic nature of ferromagnetism in In2O3 NPs has been established with the experimental observation of magnetic hysteresis loop. Photoluminescence and UV–visible studies were employed to evidence the presence of oxygen vacancies and revealed that the oxygen vacancies contribute to the ferromagnetism. The origin of ferromagnetism in In2O3 NPs may be due to exchange interactions among localized electron spin moments resulting from oxygen vacancies.  相似文献   

10.
Carbon-doped In2O3 thin films exhibiting ferromagnetism at room temperature were prepared on Si (100) substrates by the rf-magnetron co-sputtering technique. The effects of carbon concentration as well as oxygen atmosphere on the ferromagnetic property of the thin films were investigated. The saturated magnetizations of thin films varied from 1.23 to 4.86 emu/cm3 with different carbon concentrations. The ferromagnetic signal was found stronger in samples with higher oxygen vacancy concentrations. In addition, deposition temperature and different types of substrates also affect the ferromagnetic properties of carbon-doped In2O3 thin films. This may be related to the oxygen vacancies in the thin film system. The experiment suggests that oxygen vacancies play an important role in introducing ferromagnetism in thin films.  相似文献   

11.
Room temperature ferromagnetism was observed in HfO2, TiO2, and In2O3 films grown on yttrium-stabilized zirconia, LaAlO3, and MgO substrates, respectively. While the magnetic moment is rather modest in the case of In2O3 films, it is very large in the other two cases. Thin film form, which might create necessary defects and/or oxygen vacancies, must be the main reason for undoped semiconducting and insulating oxides to become ferromagnetic. From the results, a serious question arises if a transition-metal doping indeed plays any essential role in producing ferromagnetism (FM) in non-magnetic oxides.  相似文献   

12.
Magnetic properties of pure and Fe doped rutile TiO2 and TiO2-ε are investigated using the first principle density functional theory. The results show that the considered systems are ferromagnetic. Furthermore, the origin of ferromagnetism is discussed and it is found that the double exchange and super-exchange are the main interactions in these compounds. Based on the calculations, the magnitude of the magnetic moment depends on the concentration of impurities and oxygen vacancies and the largest magnetic moment corresponds to the FexTi1-xO2-ε. Moreover, using a model based on the bound magnetic polarons, the coexistence of ferromagnetic and paramagnetic phases can occur in FexTi1-xO2 containing different impurity ions such as Fe+2 and Fe+3 with different Curie temperatures. The finding may presents the potential application of the considered system as diluted magnetic semiconductor.  相似文献   

13.
This paper reports on the influence of the sintering temperature and atmosphere and transition-metal doping on the magnetic properties of nanocrystalline and bulk In2O3. Undoped nanocrystalline In2O3 is diamagnetic whatever the sintering temperature and atmosphere. All single-phase transition-metal-doped In2O3 samples are paramagnetic, with a paramagnetic effective moment originating from weakly interacting transition metal ions. No trace of ferromagnetism has been detected even with samples sintered under argon, except extrinsic ferromagnetism for samples with magnetic dopant concentrations exceeding the solubility limit.  相似文献   

14.
魏合林  张磊  刘祖黎  姚凯伦 《中国物理 B》2011,20(11):118102-118102
Uniformly distributed polycrystalline indium nanohillocks are synthesized on silicon substrates with Au catalyst by using the radio frequency magnetic sputtering technique. The results show that the Au catalyst plays a key role in the formation of indium nanohillocks. After thermally oxidizing the indium nanohillocks at 500 ℃ in air for 5 h, the indium nanohillocks totally transform into In2O3 nanohillocks. The energy-dispersive X-ray spectroscopy result indicates that many oxygen vacancies and oxygen-indium vacancy pairs exist in the In2O3 nanohillocks. Photoluminescence spectra under an Ne laser excitation at 280 nm show broad emissions at 420 nm and 470 nm with a shoulder at 450 nm related to oxygen vacancies and oxygen-indium vacancies at room temperature.  相似文献   

15.
This paper reported that the Mn-doped TiO2 films were prepared by radio frequency (RF) magnetron cosputtering. X-ray diffraction measurements indicate that the samples are easy to form the futile structure, and the sizes of the crystal grains grow big and big as the Mn concentration increases. X-ray photoemlssion spectroscopy measurements and high resolution transmission electron microscope photographs confirm that the manganese ions have been effectively doped into the TiO2 crystal when the Mn concentration is lower than 21%. The magnetic property measurements show that the Ti1-xMnxO2 (x = 0.21) films are ferromagnetic at room temperature, and the saturation magnetization, coercivity, and saturation field are 16.0 emu/cm^3, 167.5 × 80 A/m and 3740 × 80 A/m at room temperature, respectively. The room-temperature ferromagnetism of the films can be attributed to the new futile Ti1-xMnxO2 structure formed by the substitution of Mn^4+ for Ti^4+ into the TiO2 crystal .lattice, and could be explained by O vacancy (Vo)-enhanced ferromagnetism model.  相似文献   

16.
(1 0 0) oriented BaNb2O6 films have been successfully grown on LaAlO3 (1 0 0) substrate at 750 °C or 450 °C in vacuum by pulsed laser deposition. The deposited BaNb2O6 PLD films exhibit room-temperature ferromagnetism. Ab initio calculations demonstrate that stoichiometric BaNb2O6 and that with barium vacancy are nonmagnetic, while oxygen and niobium vacancy can induce magnetism due to the spin-polarization of Nb s electrons and O p electrons respectively. Moreover, ferromagnetic coupling is energetically more favorable when two Nb/O vacancies are located third-nearest-neighbored. The observed room temperature ferromagnetism in BaNb2O6 films should be mainly induced by oxygen vacancies introduced during vacuum deposition, with certain contribution by Nb vacancies.  相似文献   

17.
Magnetic properties of pure and Fe doped rutile TiO2 and TiO2-ε are investigated using the first principle density functional theory. The results show that the considered systems are ferromagnetic. Furthermore, the origin of ferromagnetism is discussed and it is found that the double exchange and super-exchange are the main interactions in these compounds. Based on the calculations, the magnitude of the magnetic moment depends on the concentration of impurities and oxygen vacancies and the largest magnetic moment corresponds to the FexTi1?xO2?ε. Moreover, using a model based on the bound magnetic polarons, the coexistence of ferromagnetic and paramagnetic phases can occur in FexTi1?xO2 containing different impurity ions such as Fe+2 and Fe+3 with different Curie temperatures. The finding may presents the potential application of the considered system as diluted magnetic semiconductor.  相似文献   

18.
Structural and magnetic properties of Fe-doped anatase TiO2 films fabricated by sol-gel spin coating are investigated. X-ray diffraction measurements reveal that Fe^3+ ions are incorporated into the TiO2 lattice. No ferromagnetism-related secondary phases and magnetic nanopaxticles are observed in the films. The presence of electron paramagnetic resonance signals at 9- 2.0 supports oxygen vacancies and/or defects generated in the films after annealing in vacuum. Magnetic measurements indicate that Fe-doped anatase TiO2 films are ferromagnetic at room temperature. These observations suggest that oxygen vacancies and/or defects axe energetically favorable for the long range Fe^3+-Fe^3+ ferromagnetic coupling in Fe-doped anatase TiO2 films.  相似文献   

19.
Laser-ablated Co-doped In2O3 thin films were fabricated under various growth conditions on R-cut Al2O3 and MgO substrates. All Co:In2O3 films are well-crystallized, single phase, and room temperature ferromagnetic. Co atoms were well substituted for In atoms, and their distribution is greatly uniform over the whole thickness of the films. Films grown at 550 °C showed the largest magnetic moment of about 0.5 μB/Co, while films grown at higher temperatures have magnetic moments of one order smaller. The observed ferromagnetism above room temperature in Co:In2O3 thin films has confirmed that doping few percent of magnetic elements such as Co into In2O3 could result in a promising magnetic material.  相似文献   

20.
Mn doped Zinc oxide (ZnO) thin films were prepared by metal organic chemical vapor deposition (MOCVD) technique. Structural characterizations by X-ray diffraction technique (XRD) and photoluminescence (PL) indicate the crystal quality of ZnO films. PL and Raman show a large fraction of oxygen vacancies (VO2+) are generated by vacuum annealed the film. The enhancement of ferromagnetism in post-annealed (Mn, In) codoped ZnO could result from VO2+ incorporation. The effect of VO2+ on the magnetic properties of (Mn, In) codoped ZnO has been studied by first-principles calculations. It is found that only In donor cannot induce ferromagnetism (FM) in Mn-doped ZnO. Besides, the presence of VO2+ makes the Mn empty 3d-t2g minority state broadened, and a t2g-VO2+ hybrid level at the conduction band minimum forms. The presence of VO2+ can lead to strong ferromagnetic coupling with the nearest neighboring Mn cation by BMP model based on defects reveal that the ferromagnetic exchange is mediated by the donor impurity state, which mainly consists of Mn 3d electrons trapped in oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号