首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
量子点的物理与光电性质主要依赖于其尺寸及密度参数,而量子点的密度、高度等参数又控制着原子在衬底上的成核行为。本文采用液滴外延法在GaAs(001)表面生长金属In液滴,研究了In液滴的扩散运动与衬底温度和沉积速率之间的关系,研究发现,随着衬底温度的升高和沉积速率的降低,In液滴尺寸增大密度却降低。通过得到的实验数据,拟合关于In液滴密度与衬底温度和沉积速率的曲线,分析了量子环的生长机制,并根据原子的表面迁移行为,进一步分析其表面原子扩散机理。  相似文献   

2.
张伟  石震武  霍大云  郭小祥  彭长四 《物理学报》2016,65(11):117801-117801
在InAs/GaAs(001)量子点生长过程中, 当InAs沉积量为0.9 ML时, 利用紫外纳秒脉冲激光辐照浸润层表面, 由于高温下In原子的不稳定性, 激光诱导的原子脱附效应被放大, 样品表面出现了原子层移除和纳米孔. 原子力显微镜测试表明纳米孔呈现以[110]方向为长轴(尺寸: 20-50 nm)、[110]方向为短轴(尺寸: 15-40 nm)的表面椭圆开口形状, 孔的深度为0.5-3 nm. 纳米孔的密度与脉冲激光的能量密度正相关. 脉冲激光的辐照对量子点生长产生了显著的影响: 一方面由于纳米孔的表面自由能低, 沉积的InAs优先迁移到孔内, 纳米孔成为量子点优先成核的位置; 另一方面, 孔外的区域因为In原子的脱附, 量子点的成核被抑制. 由于带有纳米孔的浸润层表面具有类似于传统微纳加工技术制备的图形衬底对量子点选择性生长的功能, 该研究为量子点的可控生长提供了一种新的思路.  相似文献   

3.
采用液滴外延法在GaAs (001)衬底上制备同心量子双环(concentric quantum double rings, CQDRs),利用原子力显微镜表征其表面形貌,并研究Ga液滴沉积速率对CQDRs的影响.研究结果发现,随着Ga液滴沉积速率的增加, CQDRs的密度增加,内外环半径均降低.根据成核理论中最大团簇密度和Ga液滴沉积速率之间的关系拟合出临界成核原子数目为5,表明在Ga液滴形成阶段时稳定的Ga原子晶核至少包含5个Ga原子;根据成核理论和拟合结果绘制成核过程状态转化图以深入理解Ga液滴形成过程.相关研究结果对液滴外延法制备密度可控的GaAs同心量子双环具有一定的指导意义.  相似文献   

4.
本文研究了低温时不同沉积量的In液滴在GaAs(001)衬底上的形貌特征.在衬底温度为160℃时,对In液滴形貌进行观察和分析并根据经典的成核理论解释了不同沉积量下In液滴纳米结构的形成机制和In液滴形貌随沉积量的演变规律;通过对液滴数量,直径和高度以及液滴周围出现扩散圆盘的直径和高度进行统计,结合液滴形貌与沉积量的相关理论公式以及本文实验中所得数据,拟合计算出In液滴产生扩散圆盘的最小沉积量约为3.3 ML,表明In液滴的沉积量大于3.3 ML时才会形成圆盘.相关研究结果对液滴外延法制备InAs纳米结构具有指导意义.  相似文献   

5.
熊飞  杨杰  张辉  陈刚  杨培志 《物理学报》2012,61(21):475-485
采用离子束溅射沉积的方法在Si衬底上生长Ge量子点,观察到量子点的生长随Ge原子层沉积厚度θ的增加经历了两个不同的阶段.当θ在6—10.5个单原子层(ML)范围内时,量子点的平均底宽和平均高度随θ增加同时增大,生长得到高宽比较小的圆顶形Ge量子点,伴随着量子点的生长,二维浸润层的厚度同时增大,量子点的分布密度缓慢增加;当θ在11.5一17 ML范围内时,获得高宽比较大的圆顶形Ge量子点,量子点以纵向生长为主导,二维浸润层的离解促进量子点的成核和长大,量子点的分布密度随θ的增加快速增大;量子点在θ由10.5 ML增加到11.5 ML时由一个生长阶段转变到另一个生长阶段,其分布密度同时发生6.4倍的增加.离子束溅射沉积Ge量子点的生长演变与在热平衡状态下生长的量子点不同,在量子点的不同生长阶段,其表面形貌和分布密度的变化特点是在热力学条件限制下表面原子动态演变的结果,θ的变化是引起系统自由能改变的主要因素.携带一定动能的溅射原子对生长表面的轰击促进表面原子的扩散迁移,同时压制量子点的成核,在浸润层中形成超应变状态,因而,改变体系的能量和表面原子的动力学行为,对量子点的生长起重要作用.  相似文献   

6.
InAs/GaAs量子点是重要的单光子源,位置可控量子点对实现可寻址易集成的高性能量子点光源具有重要意义.本文详细研究了氢原子条件下GaAs (001)图形衬底的低温脱氧过程,低温GaAs缓冲层生长中沟槽形貌的演化过程,以及沟槽形貌对量子点形核位置的影响.发现GaAs衬底上纳米沟槽侧壁的倾斜角较小时, InAs量子点会优先生长于沟槽底部;当沟槽的侧壁倾斜角较大时, InAs量子点则会优先生长于沟槽两侧的外边沿位置.此外,本文还研究了纳米孔洞侧壁的倾斜角对量子点成核位置的影响,实现了双量子点分子和四量子点分子的定位生长.  相似文献   

7.
改变生长工艺、控制并调整液滴中原子扩散机制是对复杂纳米结构制备的关键途径,并且对基于液滴外延方法研究半导体纳米结构十分重要.本文在不同衬底温度,不同As压下在GaAs(001)上沉积相同沉积量(5 monolayer)的In液滴并观察其表面形貌的变化.原子力显微镜图像显示,液滴晶化后所形成的扩散"盘"且呈现一定的对称性.随着衬底温度的增高,圆盘半径逐渐扩大,扩散圆盘中心出现了坑.而随着As压的增高,所形成的液滴密度增加,以液滴为中心所形成的扩散圆盘宽度逐渐减小.基于经典的成核扩散理论对实验数据拟合得到:GaAs(001))表面In原子在[110]和[110]晶向上的扩散激活能分别为(0.62 ± 0.01) eV和(1.37 ± 0.01) eV,且扩散系数D_0为1.2 × 10~(-2) cm~2/s.对比其他研究小组的结果证实了理论的正确性.实验中得到的In原子的扩散激活能以及In液滴在GaAs(001)上扩散机理,可以为InAs纳米结构特性的调制提供实验指导.  相似文献   

8.
采用分子束外延(MBE)技术制备In_(0.5)Ga_(0.5)As/GaAs量子点,利用扫描隧道显微镜(STM)对不同衬底温度下生长的样品进行表征分析.研究表明量子点密度随温度升高先增大后减小,其尺寸随温度的升高而增大.另外,量子点以S-K模式生长并受Ostwald熟化机制影响,其尺寸增大所需的能量来自应变能和温度提供的能量,高温条件下表面原子的解吸附作用会限制量子点的生长.  相似文献   

9.
采用分子束外延(MBE)技术制备In_(0.5)Ga_(0.5)As/GaAs量子点,利用扫描隧道显微镜(STM)对不同衬底温度下生长的样品进行表征分析.研究表明量子点密度随温度升高先增大后减小,其尺寸随温度的升高而增大.另外,量子点以S-K模式生长并受Ostwald熟化机制影响,其尺寸增大所需的能量来自应变能和温度提供的能量,高温条件下表面原子的解吸附作用会限制量子点的生长.  相似文献   

10.
采用分子束外延(MBE)技术制备In_(0.5)Ga_(0.5)As/GaAs量子点,利用扫描隧道显微镜(STM)对不同衬底温度下生长的样品进行表征分析.研究表明量子点密度随温度升高先增大后减小,其尺寸随温度的升高而增大.另外,量子点以S-K模式生长并受Ostwald熟化机制影响,其尺寸增大所需的能量来自应变能和温度提供的能量,高温条件下表面原子的解吸附作用会限制量子点的生长.  相似文献   

11.
红光InAlAs量子点的结构和光学性质   总被引:1,自引:1,他引:0  
周伟  梁基本 《发光学报》1999,20(3):230-234
利用MBE方法在(001)衬底上成功地生长密度大、尺寸小、发红光的InAlAs/AlGaAs量子点结构。通过原子力显微镜观察表明,InAlAs量子的密度和大小都随覆盖厚度的增加而增大;发现Al原子的表面迁移率决定InAlAs量子点的形貌,光荧光谱证实了量子点的发光峰值在红光范围,并结合形貌的统计得到了量子点的发光峰展宽主要昌受量子点的横向尺寸影响。  相似文献   

12.
GaAs (001) substrates are patterned by electron beam lithography and wet chemical etching to control the nucleation of lnAs quantum dots (QDs). InAs dots are grown on the stripe-patterned substrates by solid source molecular beam epitaxy. A thick buffer layer is deposited on the strip pattern before the deposition of InAs. To enhance the surface diffusion length of the In atoms, InAs is deposited with low growth rate and low As pressure. The AFM images show that distinct one-dimensionally ordered InAs QDs with homogeneous size distribution are created, and the QDs preferentiMly nucleate along the trench. With the increasing amount of deposited InAs and the spacing of the trenches, a number of QDs are formed beside the trenches. The distribution of additional QDs is long-range ordered, always along the trenchs rather than across the spacing regions.  相似文献   

13.
Extremely low density InAs quantum dots (QDs) are grown by molecular beam droplet epitaxy. The gallium deposition amount is optimized to saturate exactly the excess arsenic atoms present on the GaAs substrate surface during growth, and low density InAs/GaAs QDs (4× 10^6 cm^-2) are formed by depositing 0.65 monolayers (MLs) of indium. This is much less than the critical deposition thickness (1.7 ML), which is necessary to form InAs/GaAs QDs with the conventional Stranski-Krastanov growth mode. The narrow photoluminescence linewidth of about 24 meV is insensitive to cryostat temperatures from IO K to 250K. All measurements indicate that there is no wetting layer connecting the QDs.  相似文献   

14.
An InAs ring structure accompanying the formation of quantum dots (QDs) was fabricated on (1 0 0)GaAs using droplet epitaxy. The QDs were located in the vicinity of the ring, due to the diffusion of In atoms from the In droplets. In addition, the dots were found to have distributed elliptically and preferentially along the [0 1 1] direction, implying that In itself prefers to diffuse along the [0 1 1] direction, which is the opposite of the favorable diffusion orientation of group III atoms on (1 0 0)GaAs under a commonly used As-stabilized growth condition. This is the first observation of a ring structure accompanying the formation of quantum dots in droplet epitaxy.  相似文献   

15.
液滴外延技术不仅适用于晶格失配,也适用于晶格匹配材料系统,且易于制备低维半导体结构,如低密度量子点、环等.本文研究了液滴外延法在GaAs表面进行不同Al、Ga组分的量子点生长.在实验中用反射式高能电子衍射仪(Reflection High Energy Electron Diffraction, RHEED)对样品进行原位监控.通过控制Al、Ga液滴的沉积速率来控制液滴同时沉积在衬底上形成的组分.研究发现,随着Al组分的增加,量子点逐渐变得密集,润湿角变低.在Al组分增高超过0.5之后,出现了大小不一的量子点,且量子点密度出现指数型增长.对此进行研究分析,给出了一个经验公式,并就现象进行了解释.  相似文献   

16.
The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.  相似文献   

17.
The surface reconstructions on InAs(111)A wetting layer grown on GaAs substrate are investigated by our ab initio-based approach incorporating the chemical potentials of In atom and As molecules in the vapor phase as functions of temperature and beam equivalent pressure. The calculated results imply that the most stable surface structure of InAs with/without lattice constraint from the substrate is the In-vacancy surface under conventional growth conditions. The In-vacancy surface is dramatically stabilized on the wetting layer, since the atoms around the In-vacancy are easily displaced to effectively lower the strain energy due to the lattice constraint from the GaAs substrate. Distinctive feature between InAs(111)A surfaces with and without lattice constraint is found in the stable adsorption sites. In adatoms favor the In-vacancy site on the InAs without lattice constraint in contrast to the interstitial sites on the InAs wetting layer. These results suggest that the surface structure and adsorption-desorption behavior on the wetting layer are crucial for investigating the growth processes of nanostructures such as quantum dots and stacking fault tetrahedrons.  相似文献   

18.
The effect of temperature on the self-assembled InAs quantum dots (QDs) grown on GaAs substrate under arsenic shutter closed condition has been studied. From atomic force microscopy (AFM), it was found that the size of InAs dots exhibited a transition from single-sized uniformly distributed quantum dot (QD) at a growth temperature of 490°C to two groups of different sizes QDs at 510°C. Since the desorption rate of In atoms from the substrate surface is very high at 510°C, a growth model is proposed that attributes the larger sized QDs to the enhanced capture of desorbed In atoms by a local random protrusion which initiates a regenerative capture and growth process and leads to explosive growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号