首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 202 毫秒
1.
研究了以InAs量子点为有源区的二维GaAs基光子晶体微腔的设计与制作,测试并分析了室温下微腔的光谱特性.观察到了波长约为1137 nm,谱线半高宽度约为1 nm的尖锐低阶谐振模式发光峰.我们比较了不同刻蚀条件下光子晶体微腔的发光谱线,结果表明空气孔洞截面的垂直度是影响光子晶体微腔发光特性的重要因素之一.通过调节干法刻蚀工艺,改变空气孔半径与晶格常数的比率,可以在较大范围内调节谐振模式发光峰位置,达到谐振模式与量子点发光峰调谐的目的.  相似文献   

2.
基于直径为7.2μm的微盘谐振腔器件,分别引入对称缺陷和非对称缺陷,利用时域有限差分法研究缺陷位置和尺寸对各自微盘谐振腔各阶模式的影响.研究表明:随着缺陷半径增大,各阶谐振模式向短波长移动并且由高到低逐级受到抑制.在对称缺陷腔、非对称缺陷腔中内嵌一个微盘,构成内嵌型双微盘谐振腔,并优化缺陷腔、内嵌微盘尺寸及位置,可实现1 128nm、1 109nm波长的稳定单模谐振.该内嵌型双微盘谐振腔微盘模式简单,实现了谐振模式的简化,具有广泛的应用前景.  相似文献   

3.
光学微球腔的壳层结构研究   总被引:5,自引:4,他引:1  
使用时域有限差分法,对带表面壳层的光学微球腔进行模拟计算,分析了微腔内回音壁模式的能量密度分布,总结了壳层厚度对微球腔谐振性能的影响,并由此探讨对微球腔进行调谐和模式控制的方法.采用这种壳层结构,微球腔的谐振性能得到了有效提高(Q值提高了30%以上,模式体积减小了60%),为光学微球腔后续的结构设计和实际应用提供了一个新的优化思路.  相似文献   

4.
张佳  徐旭明  何灵娟  于天宝  郭浩 《物理学报》2012,61(5):54213-054213
谐振腔因其具有选频功能而在集成光学领域具有广泛的应用. 通过两个光子晶体环形腔、四个不同尺寸的光子晶体微腔及波导之间的耦合, 实现了1310 nm, 1550 nm, 1600 nm和1650 nm 四个波长的波分解复用.时域有限差分法模拟分析的结果表明, 仅仅通过调制输出波导边缘介质柱的半径, 即可使四个波长的输出效率均达到90%以上. 所设计的器件不但效率高, 而且尺寸小(约为12 μ m× 17 μ m), 在未来的光通信领域中具有潜在的应用价值.  相似文献   

5.
一维光子晶体谐振腔的模式类型及其性质   总被引:7,自引:0,他引:7  
利用光学传输矩阵法研究了一维光子晶体谐振腔的谐振波长、品质因子和缺陷层厚度之间的变化关系,发现谐振腔内存在不同级次的谐振模式;对于同一级次的谐振模式,品质因子在某一波长(λm)时达到极大值,该波长恰为光子晶体反射率最高处所对应的波长,也是该光子晶体的布拉格共振反射波长;在λm处,品质因子随级次的增加而线性增加;品质因子随周期层数增加而指数增加,但其增长因子与模式级次无关,也与周期数无关,只与谐振波长有关;对于所有级次的谐振模式,增长因子在λm处达到最大值。这对提高品质因子、减小谐振腔体积、优化谐振腔有重要意义。  相似文献   

6.
刘建华  唐军  商成龙  张伟  毕钰  翟陈婷  郭泽彬  王明焕  郭浩  钱坤  刘俊  薛晨阳 《物理学报》2015,64(15):154206-154206
基于谐振式光学陀螺高灵敏度、低成本与微型化的发展需求, 为了实现高灵敏度的谐振式微光机电陀螺, 提出了以集成光学微谐振腔领域里高Q值、大直径谐振腔的制作为目标, 应用方向为谐振式光学陀螺的球形光学微谐振腔核心敏感单元. 在实验中以氢火焰作为热源采用熔融法制备球形光学微谐振腔. 通过调节氢气的流量控制氢火焰热源面积, 制备了不同直径(300-2200 μm)的球形谐振腔, 分析了球形谐振腔Q 值、DQ乘积、陀螺灵敏度与谐振腔直径D的对应关系及其原因, 获得了最优参数的面向谐振式光学陀螺的球形谐振腔敏感单元. D=1260 μm时, 球腔品质因数 Q=7.18×107, 得到的最优陀螺灵敏度约为10°/h, 满足商业级应用的需求, 为芯片级、高精度、低成本的新型谐振式光学微腔陀螺的研究奠定了实验基础.  相似文献   

7.
一种新型光子晶体双色谐振腔   总被引:2,自引:0,他引:2  
提出一种新型的光子晶体双色谐振腔,以光学传输矩阵法为基础给出了设计的关键参量及其优化方法,并分析了其物理原理.根据常用的650nm/780nm,532nm/671nm,1079nm/1320nm和1 064 nm/1 319 nm等双色激光谱线,设计了4个光子晶体双色谐振腔结构.这种一维光子晶体谐振腔只需要一个谐振腔,缺陷层两侧周期数为5层时,该腔体总厚度小于5 μm,可获品质因子为103~104,相对带宽为10-4~10-5的双色谱线,且模式纯净,基于基模谐振.  相似文献   

8.
周静  王鸣  倪海彬  马鑫 《物理学报》2015,64(22):227301-227301
设计了一种六角密排的二维环形纳米腔阵列结构, 利用时域有限差分算法对该结构的光学特性进行了探究. 仿真结果表明, 在线性偏振光入射时, 环形腔内可以形成多重圆柱形表面等离激元谐振, 谐振波长的个数和大小与环形腔的结构参数相关. 根据透、反射光谱, 电场矢量的模式分布及截面电荷密度的分布, 谐振波长处形成圆柱形表面等离激元, 谐振波长处入射光能量大部分在环形腔内损耗, 此时反射率为极小值, 环形腔内的电场增强效应为极大值(光强增强可达1065倍). 谐振波长与环形腔的结构参数(狭缝内径、狭缝外径、膜厚、环境介质折射率、金属的材质)相关, 通过调节结构参数, 谐振波长在350–2000 nm范围内可调. 通过对比相同结构参数的单个环形腔和环形腔阵列的仿真结果, 周期排布对环形腔内的圆柱形表面等离激元吸收峰位置影响不明显. 该结构反射光谱对入射光电矢量偏振方向不敏感. 谐振波长的可调控性对于表面拉曼增强和表面等离激元共振传感器的设计与优化具有指导性意义, 且应用于折射率传感器时灵敏度可达1850 nm/RIU.  相似文献   

9.
耦合光学微腔(Coupled optical microcavity,CMC)是一种特殊结构的微腔,在耦合微腔中,两个独立的微腔相邻耦合在一起.通常一个腔是无源的,另一个腔是有源的.首次研究了有机材料在耦合微腔中的自发发射特性.实验采用的有机发光材料为八羟基喹啉铝Tris(8-quinolinolato)aluminium(Alq3),器件的结构为Glass/DBRA/Filler/DBRB/Alq3/DBRC.底部腔是无源的,组成为DBRA/Filler/DBRB.顶部腔是有源的,由DBRB/Alq3/DBRC构成.其中反射镜DBRA、DBRB、DBRC以及填充层(Filler)均由光学介质材料构成.通过结构设计使两个腔的谐振波长均位于530nm.耦合微腔器件与单层Alq3薄膜相比较,Alq3薄膜的光致发光光谱是峰值位于511nm的宽谱带,而在耦合微腔器件中观察到的是具有两个腔模式,峰值波长分别位于518,553nm的增强并窄化的光谱.这是由于两个腔的光场耦合引起了腔模式分裂.结果表明耦合微腔能极大地改变有机材料的自发发射特性,可以用来提高器件的发光效率.  相似文献   

10.
正三角形及正方形微光学腔模式特性研究   总被引:2,自引:0,他引:2  
黄永箴  国伟华 《物理》2004,33(7):515-518
微谐振腔模式特性研究是利用微腔研制新型光电器件的基础.为了研制出能采用平面工艺制作的定向输出的微腔激光器,文章采用解析和数值模拟方法深入研究了正三角形及正方形光学微腔的模式特性,并得到与数值模拟结果符合非常好的解析场分布及模式波长.对正方形光学微腔,把模式组合成满足正方形对称性的场分布,发现其类WG模式只存在品质因子比它小一个数量级以上的偶然简并模式,因此正方形微腔有利于实现真正的单模工作.  相似文献   

11.
杜金锦  李文芳  瑞娟  李刚  张天才 《物理学报》2013,62(19):194203-194203
超高精细度微共振器是实现原子或者其他偶极子与腔强耦合作用的基本部分, 在腔量子电动力学(QED)、弱光非线性效应及微光学器件研究中扮演着重要的角色. 微腔基本参数的精密测量最终可以确定腔与原子的耦合系数、腔场衰减率, 对决定系统的动力学特性具有重要的意义. 但是由于超高精细度光学微腔本身的构造和多层镀膜的特点, 高精度地确定其共振频率及有效腔长存在一定困难. 本文结合修正的多层介质膜模型, 实验上完成了膜层为37层的超高精细度光学微腔在不同共振频率下有效腔长的精密测量, 获得了超高精细度光学微腔的共振频率及波长; 理论计算分析与实验测量结果相符, 对纵模间隔的测量精度误差低于0.004 nm, 较为修正前提高了约两个量级. 同时给出了对应不同模式数下, 光波渗入到介质中的深度. 该方法可望应用到其他微共振器的精密测量中. 关键词: 光学微腔 高精细度 共振频率  相似文献   

12.
We analyze theoretically both the fundamental and the technical quantum limitations of the sensitivity of a passive resonant optical gyroscope based on a high finesse monolithic optical microcavity. We show that the quantum back action associated with the resonantly enhanced optical cross- and self-phase modulation results in the standard quantum limit of the angle random walk of the gyroscope, which reaches approximately 0.2 deg/hr1/2 for a millimeter scale CaF2 whispering gallery mode resonator based device.  相似文献   

13.
Optomechanics describes the interconnection between the terahertz optical field and mechanical microwave field, making it appealing in the context of nanophotonics and quantum information science. Here, the optomechanically induced mode transition and spectrum enhanced phenomenon in an optomechanical microcavity system are studied. An optical filter that is limited by the bandwidth of the mechanical mode is built. The analytical model is presented by considering a microresonator system which supports two electromagnetic modes and a single mechanical mode. Through the filtering of mechanical resonator, the optical spectral width becomes similar to the mechanical resonator bandwidth which can go beyond the limit of the cavity quality factor. It is found that the transition between the optomechanically induced transparency and the optomechanically induced absorption can be observed by tuning the coupling between the microresonator and the waveguide. Moreover, the controllable nonreciprocal excitation of the system can also be observed.  相似文献   

14.
利用浸渍法将8羟基喹啉铝(Alq3)镶嵌到多孔硅微腔中,制备了多孔硅微腔—Alq3镶嵌膜,研究了多孔硅微腔对镶嵌其中的Alq3自发发射的微腔效应,观察到了光谱窄化、发光强度增强等现象。镶嵌于多孔硅微腔中的Alq3荧光光谱的半峰全宽只有15nm,而非微腔样品,即镶嵌于普通的单层多孔硅中Alq3荧光谱半峰全宽在85nm以上。并且有微腔时Alq3发光强度比没有微腔时Alq3发光强度增强一个数量级。随机改变微腔中Bragg反射镜高折射率层的几何厚度可使高反射区展宽,从而更加有效地抑制了多孔硅本身的发光模,使发光色度更纯,但由于峰值透射率减小,导致共振峰强度有所减小。多孔硅微腔有机镶嵌膜有可能成为进一步发展Alq3在电致发光器件方面应用的一条新途径。  相似文献   

15.
Very recently, a multiexcitonic quantum dot in an optical microcavity have been theoretically studied [Herbert Vincka, Boris A. Rodriguez, and Augusto Gonzalez, Physica E, 2006, 35: 99–102]. However, due to the inevitable damping losses through the microcavity, in this work, we will present a more precise and sound model in the Lindblad form master equation to investigate the photonic properties of a single quantum dot (QD) in an optical microcavity system, in which the QD may confine the multiexcitons and be in resonant interaction with a single photonic mode of an optical microcavity. The excitation energies, and the properties of the emission photon from the QD microcavity are computed as functions of the exciton-photon coupling strength, detuning, and pump rate. We further compare our results with their results, and find that the calculated intensity of the emitted photon and the spectra crucially depend on the exciton-photon coupling strength g, the photon detuning, and the number of excitons in the QD. Finally, we will give a physical mechanism of the dressed-state picture for the strong coupling between the single mode of an optical microcavity and the QD emitters to explain the details of the emission photon spectra. Our study establishes useful guidelines for the experimental study of such multiexcitonic quantum dot in an optical microcavity system.   相似文献   

16.
光学谐振腔由于其高Q值特性,作为谐振式陀螺的核心元件,有望实现谐振式陀螺的小型化、集成化,但是非互易性噪声成为制约其精度提高的不利因素. 介绍了采用传统半导体工艺制备的盘型腔与熔融法拉制的锥形光纤组成的耦合系统. 当盘型腔在光纤锥区的不同位置进行耦合谐振时,将输入输出正/反对调,观察到输出透射谱发生偏差,谐振频率、耦合效率以及Q值均发生变化,即存在非互易性现象. 用Rsoft软件对锥形光纤倏逝场分布特性进行仿真,理论分析了非互易性产生的原因. 以此可抑制谐振式光学陀螺应用中由锥形光纤与谐振腔组成的耦合系统产生的非互易性噪声. 关键词: 光学谐振腔 锥形光纤 非互易性 谐振式陀螺  相似文献   

17.
Rui Yang  Apeng Yun  Yuanxian Zhang  Xiaoyun Pu 《Optik》2011,122(10):900-909
The quantum interpretation of whispering gallery modes in a cylindrical optical microcavity is presented in analogy with quantum mechanical theory. The formulas for the resonance shifts caused by a small change in correlative refractive index are derived. Then they are applied to two applications of the cylindrical microcavity to probe the change of surrounding medium and the nonlinear effect of cavity's surface.  相似文献   

18.
有机薄膜在平面光学微腔中的光致发光特性   总被引:2,自引:0,他引:2  
本文研究了有机薄膜在平面光学微腔中的光致发光特性。有机光学微脸以多层介质膜和金属银分别作为反射镜,8-羟基喹啉铝(Alq)为发光层。Alq薄膜的荧光峰位于519nm,谱线的半高全宽为90nm。微腔的荧光峰位于530nm,谱线的半高全宽窄化至10nm。谐振波长处的发射强度提高了一个数量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号