首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quality of the interface region in a semiconductor device and the density of interface states (DOS) play important roles and become critical for the quality of the whole device containing ultrathin oxide films. In the present study the metal-oxide-semiconductor (MOS) structures with ultrathin SiO2 layer were prepared on Si(100) substrates by using a low temperature nitric acid oxidation of silicon (NAOS) method. Carrier confinement in the structure produces the space quantization effect important for localization of carriers in the structure and determination of the capacitance. We determined the DOS by using the theoretical capacitance of the MOS structure computed by the quantum mechanical approach. The development of the density of SiO2/Si interface states was analyzed by theoretical modeling of the C-V curves, based on the superposition of theoretical capacitance without interface states and additional capacitance corresponding to the charges trapped by the interface states. The development of the DOS distribution with the passivation procedures can be determined by this method.  相似文献   

2.
The effect of SiO₂ buffer layers with various atomic densities on the interface dipole of high-k/SiO2 is confirmed. An ultrathin SiO₂ layer is formed on Si using the plasma-enhanced chemical vapor deposition (PECVD), H2O2 oxidation and nitric acid oxidation (NAOS). The atomic density ratio between the SiO2 layer with various methods and the high-k is calculated respectively. As the oxygen density of the SiO2 increased, the amount of the dipole and the flatband voltage (VFB) shift decreased. Furthermore, leakage current density of the H2O2 (0.9 × 10−2 A/cm2) due to the formation of low-density SiO2, decreases by approximately six orders of magnitude when SiO2 buffer layer is inserted using the NAOS (5.13 × 10-8 A/cm2). Consequently, it is demonstrated that the dipoles that affects the VFB shift is formed by the diffusion of oxygen ions between the high-k and SiO2 interface, which has a significant effect of the MOS capacitor.  相似文献   

3.
We investigated a variation of frequency-dependent alternating current (AC) surface photovoltages (SPVs) in thermally oxidized, chromium-contaminated, n-type silicon (Si) wafers. As previously reported, immediately after rinsing in Cr-contaminated solution, a Cr(OH)3–Si contact causes a Schottky-barrier-type AC SPV on n-type Si. Upon oxidation at 373 K for 10 min, the Schottky barrier collapses and, with further oxidation, a metal-induced negative oxide charge, due to atomic bridging of (CrOSi) and/or CrO2-\mathrm{CrO}_{2}^{-} networks, definitely grows over time in SiO2. For samples oxidized at temperatures between 823 and 1023 K for 30 min, the observed AC SPV gives evidence that the metal-induced negative oxide charge causes a strongly inverted state of the Si surface. At oxidation temperatures higher than 1023 K and /or for an oxidation time longer than 60 min, the level height of the AC SPV is reduced, implying that the strongly inverted state changes into a less depleted state, whilst, finally, the AC SPV disappears. In this case, the collapse of the (CrOSi) and/or CrO2-\mathrm{CrO}_{2}^{-} networks is anticipated, with a possible change into Cr2O3. The existence of the (CrOSi) and/or CrO2-\mathrm{CrO}_{2}^{-} networks has also been confirmed in p-type Si wafers.  相似文献   

4.
Si-based metal–ferroelectric–semiconductor (MFS) structures without buffer layers between Si and ferroelectric films have been developed by depositing SrBi2Ta2O9 (SBT) directly on n-type (100)-oriented Si. Some effective processes are adopted to improve the electrical properties of these MFS structures. Contrary to the conventional MFS structures with top electrodes directly on ferroelectrics, our MFS structures have been developed with thin dense SiO2 films deposited between ferroelectric films and top electrodes. Due to the SiO2 films, the leakage current densities of MFS structures are reduced to 2×10-8 A/cm2 under the bias of 5 V. The C-V electrical properties of the MFS structures are greatly improved after annealing at 400 °C in N2 ambient for 1 h. The C-V memory windows are increased to 3 V, which probably results from the decrease of the interface trap density at the Si/SBT interface. Received: 7 September 1999 / Accepted: 24 November 1999 / Published online: 2 August 2000  相似文献   

5.
郑分刚  陈建平  李新碗 《物理学报》2006,55(6):3067-3072
选用不同浓度的Pb(Zr0.52Ti0.48)O3溶胶,用Sol-gel法在Pt/Ti/SiO2/Si基片上沉积一层厚度不同的Pb(Zr0.52Ti0.48)O3 (PZT52)过渡层,经400℃烘烤、550℃退火等程序后,再用Sol-gel法在PZT52过渡层上沉积Pb(Zr0.52Ti0.48)O 关键词: PZT铁电薄膜 择优取向 过渡层 剩余极化强度  相似文献   

6.
p型硅MOS结构Si/SiO2界面及其附近的深能级与界面态   总被引:1,自引:0,他引:1       下载免费PDF全文
陈开茅  武兰青  彭清智  刘鸿飞 《物理学报》1992,41(11):1870-1879
用深能级瞬态谱(DLTS)技术系统研究了Si/SiO2界面附近的深能级和界面态。结果表明,在热氧化形成的Si/SiO2界面及其附近经常存在一个浓度很高的深能级,它具有若干有趣的特殊性质,例如它的DLTS峰高度强烈地依赖于温度,以及当栅偏压使费密能级与界面处硅价带顶的距离明显小于深能级与价带顶的距离时,仍然可以观测到一个很强的DLTS峰。另外,用最新方法测量的Si/SiO2界面连续态的空穴俘获截面与温度有关,而与能量位置无明显关系,DLTS测 关键词:  相似文献   

7.
Ultrathin gate dielectrics for silicon nanodevices   总被引:1,自引:0,他引:1  
This paper reviews recent progress in structural and electronic characterizations of ultrathin SiO2thermally grown on Si(100) surfaces and applications of such nanometer-thick gate oxides to advanced MOSFETs and quantum-dot MOS memory devices. Based on an accurate energy band profile determined for the n + -poly- Si/SiO2/Si(100) system, the measured tunnel current through ultrathin gate oxides has been quantitatively explained by theory. From the detailed analysis of MOSFET characteristics, the scaling limit of gate oxide thickness is found to be 0.8 nm. Novel MOSFETs with a silicon quantum-dot floating gate embedded in the gate oxide have indicated the multiple-step electron injection to the dot, being interpreted in terms of Coulombic interaction among charged dots.  相似文献   

8.
The effect of gamma irradiation on MOS devices prepared under different oxidation conditions Is investigated. The C-V characteristics of the devices are studied before and after exposing the latter with gamma radiations of CO60 (1.17 and 1.33 MeV gamma rays). For MOS transistor (n-channel depletion type devices) the C-V characteristics change slightly towards the negative voltage axis and the Cmin also decreases after Irradiation. For MOS capacitor (wet oxide) there is a change from high frequency C-V characteristics to low frequency C-V characteristics. In the case of a MOS capacitor (HCl grown) breakdown occurs relatively at lower voltage.  相似文献   

9.
Angle resolved photoemission studies of the Si 2p and Si 1s core levels and the Si KL2,3L2,3 Auger transitions from SiO2/SiC samples are reported. Most samples investigated were grown in situ on initially clean and well ordered √3×√3 reconstructed 4H-SiC(0 0 0 1) surfaces but some samples were grown ex situ using a standard dry oxidation procedure. The results presented cover samples with total oxide thicknesses from about 5 to 118 Å. The angle resolved data show that two oxidation states only, Si+1 and Si+4, are required to explain and model recorded Si 2p, Si 1s and Si KLL spectra.The intensity variations observed in the core level components versus electron emission angle are found to be well described by a layer attenuation model for all samples when assuming a sub-oxide (Si2O) at the interface with a thickness ranging from 2.5 to 4 Å. We conclude that the sub-oxide is located at the interface and that the thickness of this layer does not increase much when the total oxide thickness is increased from about 5 to 118 Å.The SiO2 chemical shift is found to be larger in the Si 1s level than in the Si 2p level and to depend on the thickness of the oxide layer. The SiO2 shift is found to be fairly constant for oxides less than about 10 Å thick, to increase by 0.5 eV when increasing the oxide thickness to around 25 Å and then to be fairly constant for thicker oxides. An even more pronounced dependence is observed in the Si KLL transitions where a relative energy shift of 0.9 eV is determined.The relative final state relaxation energy ΔR(2p) is determined from the modified Auger parameter. This yields a value of ΔR(2p)=−1.7 eV and implies, for SiO2/SiC, a “true” chemical shift in the Si 2p level of only ≈0.4 eV for oxide layers of up to 10 Å thick.  相似文献   

10.
Rapid growth of ultra thin oxide films (40–180Å) of silicon using a low-energy large-area electron beam has been performed with a pressure ratio of 31 (O2/He) and a total pressure of 0.5–0.7 Torr. A higher oxidation rate of about 625Å2/s is found for shorter irradiation time of the e-beam in the e-beam dose range 0.75–3 Coulomb/cm2 and at lower substrate temperature 540–740°C. AES and XPS demonstrated a rapid electron-stimulated oxidation process of the Si surface. For the grown ultra thin oxide films, C-V characteristics, dielectric strength, uniformity of the film over the entire Si wafer and its thickness as a function of the processing time of the e-beam are also presented.  相似文献   

11.
Transparent SiO2 thin films were selectively fabricated on Si wafer by 157 nm F2 laser in N2/O2 gas atmosphere. The F2 laser photochemically produced active O(1D) atoms from O2 molecules in the gas atmosphere; strong oxidation reaction could be induced to fabricate SiO2 thin films only on the irradiated areas of Si wafer. The oxidation reaction was sensitive to the single pulse fluence of F2 laser. The irradiated areas were swelled and the height was approximately 500-1000 nm at the 205-mJ/cm2 single pulse fluence for 60 min laser irradiation. The fabricated thin films were analytically identified to be SiO2 by the Fourier-transform IR spectroscopy. The SiO2 thin films could be also removed by subsequent chemical etching to fabricate micro-holes 50 nm in depth on Si wafer for microfabrication.  相似文献   

12.
Thick (i.e., ∼10 nm) SiO2/Si structure has been formed at 121 °C by immersion of Si in relatively low concentration HNO3 followed by that in 68 wt.% HNO3 (i.e., two-step nitric acid (HNO3) oxidation method of Si, NAOS) and spectroscopic properties and electrical characteristics of the NAOS SiO2 layers are investigated. The SiO2 thickness strongly depends on the concentration of HNO3 aqueous solutions employed in the initial oxidation, and it becomes the largest at the HNO3 concentration of 40 wt.%. The MOS diodes with the ∼9 nm SiO2 layer formed by the NAOS method possess a relatively low leakage current density (e.g., 10−8 A/cm2 at the forward bias of 1 V) and it is further decreased by more than one order of magnitude by post-metallization annealing (PMA) in hydrogen at 250 °C. The good leakage characteristic is attributable to atomically flat SiO2/Si interfaces and high atomic density of 2.30-2.32 × 1022 atoms/cm3 of the NAOS SiO2 layers. High-density interface states are present in as-prepared SiO2 layers and they are eliminated by PMA in hydrogen.  相似文献   

13.
王少伟  陆卫  王弘  王栋  王民  沈学础 《物理学报》2001,50(12):2461-2465
采用化学溶液分解法(CSD)在Si衬底上制备了Bi2Ti2O7薄膜.X射线双晶衍射和原子力显微镜检测表明,所制备的薄膜主要为Bi2Ti2O7相的多晶材料.同时还研究了AuBi2Ti2O7/n-Si(100)结构的电容电压(C-V)特性,结果表明,在Bi2Ti2O关键词: C-V特性 2Ti2O7薄膜')" href="#">Bi2Ti2O7薄膜 电荷迁移  相似文献   

14.
The diffusion mechanism during the wet oxidation of Si(100) at 1373 K was investigated by successive oxidations finally containing isotopic water. SiO2 was first thermally grown on Si in non-labeled oxidizing ambient (dry O2 or H2O) followed by isotopic water (H218O) to trace 18O species in SiO2. The distributions of 16O and 18O in the oxide film were analyzed by means of secondary ion mass spectroscopy (SIMS). SIMS depth profiles show that there was a wide overlap of both isotopes (18O and 16O) throughout the SiO2 layer, no matter whether the first oxidation step was carried out in dry O2 or H2O, and the concentration gradient of 18O decreased with increasing oxidation time at the second oxidation step by H218O. The results suggest that the diffusion mechanism in SiO2 during water vapor oxidation is exchange diffusion; H2O related oxidizing species diffuse through the network with significant exchange with the pre-existing oxygen in it.  相似文献   

15.
The influence of ion (Ar+ 0.5 keV, 2 microA/cm2) and electron (2 keV, 2 mA/cm2) bombardment on the elemental composition of SiO2 was investigated in the temperature range of 270–790 K. Elemental composition was controlled by AES. It was found that both ion and electron bombardment resulted in an increasing amount of Si92 (elemental silicon) and in decreasing amounts of both O510 and Si78 (silicon bound to oxygen). The temperature influence on the composition of SiO2 is negligible under ion bombardment while the amount of Si92 strongly increases under electron bombardment at temperatures exceeding 600 K. The mechanism of temperature dependence is discussed.  相似文献   

16.
Rapid thermal oxidation of high-Ge content (Ge-rich) Si1−xGex (x = 0.85) layers in dry O2 ambient has been investigated. High-resolution X-ray diffraction (HRXRD) and strain-sensitive two-dimensional reciprocal space mapping X-ray diffractometry (2D-RSM) are employed to investigate strain relaxation and composition of as-grown SiGe alloy layers. Characterizations of ultra thin oxides (∼6-8 nm) have been performed using Fourier transform infrared spectroscopy (FTIR) and high-resolution X-ray photoelectron spectroscopy (HRXPS). Formation of mixed oxide i.e., (SiO2 + GeO2) and pile-up of Ge at the oxide/Si1−xGex interface have been observed. Enhancement in Ge segregation and reduction of oxide thickness with increasing oxidation temperature are reported. Interface properties and leakage current behavior of the rapid thermal oxides have been studied by capacitance-voltage (C-V) and current-voltage (J-V) techniques using metal-oxide-semiconductor capacitor (MOSCAP) structures and the results are reported.  相似文献   

17.
Abstract

The annealing of bare thermal oxide on silicon at 400–500°C in a hydrogen bearing gas results in a reduced density of states Nss at the substrate silicon/oxide interface. Treatments of this type have played a role in MOS processing schedules for several years. However, a similar approach applied to large areas (cm2) of poly-silicon coated oxide appears to be less effective in reducing Nss. This may be due to the polysilicon acting as a partially impermeable barrier which tends to starve the substrate/oxide interface of hydrogen.

In the present work hydrogenation of 2-inch diameter, polysilicon coated wafers has been accomplished by hydrogen ion implantation. H2+ ions of 135 kV energy were implanted (to a dose of 1015 cm?2) through a 7000 Å polysilicon coating into an underlying 1400 Å SiO2 layer. The polysilicon was removed after 30-min anneals carried out in pure N2 at 300, 400 or 500°C. Aluminium dots, 1 mm in diameter were then deposited on to the oxide and high frequency (1 MHz) and quasistatic C-V curves recorded for determinations of Nss. Control anneals on unimplanted material were carried out in pure N2 and N2-H2 ambients. Control samples annealed in pure N2 with their polysilicon coating intact had mid-gap Nss values of not less than 4 × 1010 cm?2 eV?1. The corresponding value after N2-H2 anneals on polysilicon-free wafers was 3 × 1010. H2 + implanted samples annealed in pure N2 with their polysilicon intact had mid-gap Nss values of 1 × 1010 cm?2 eV?1.

The effectiveness of ion beam hydrogenation may depend upon confinement of the associated displacement damage to the polysilicon. This allows the implanted hydrogen to be activated within the SiO2 at temperatures similar to those employed for normal hydrogeneous gas annealing of the substrate silicon/oxide interface.  相似文献   

18.
在等离子体增强化学气相沉积(PECVD)系统中,利用逐层淀积非晶硅(a-Si)和等离子体氧化相结合的方法制备二氧化硅(SiO2)介质层.电容电压(C-V)和电导电压(G-V)测量结果表明:利用该方法在低温(250 ℃)条件下制备的SiO2介质层均匀致密,其固定氧化物电荷和界面态密度分别为9×1011cm-2和2×1011cm-2·eV-1,击穿场强达4.6 MV/cm,与热氧化形成的SiO2介质层的性质相当.将该SiO2介质层作为控制氧化层应用在双势垒纳米硅(nc-Si)浮栅存储结构中,通过调节控制氧化层的厚度,有效阻止栅电极与nc-Si之间的电荷交换,延长存储时间,使存储性能得到明显改善. 关键词: 等离子体氧化 二氧化硅 纳米硅 控制氧化层  相似文献   

19.
To characterize the local relaxation in the structure of lanthanum silicate oxyapatite materials, six compositions with different cation and oxygen stoichiometries (La8Ba2Si6O26, La9BaSi6O26.5, La10Si5.5Mg0.5O26.5, La9.33SiO26, La9.67SiO26.5 and La9.83Si5.5Al0.5O26.5) were investigated by combining Raman scattering and 29Si and 27Al magic‐angle spinning nuclear magnetic resonance (MAS‐NMR) spectroscopies. Only [SiO4]4− species were evidenced and the hypotheses of [Si2O7]6− and [Si2O9]8− entities were ruled out. Both oxygen excess and cation vacancies induce local distortions in the structure, which leads to nonequivalent [SiO4]4− species, characterized by different 29Si MAS‐NMR signals and by splitting of Raman signals. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Raman spectroscopy/mapping is used to investigate the variation of Si phonon wavenumbers, i.e., lower wavenumber (LW ~ 495–510 cm−1) and higher wavenumber (HW ~ 515–519 cm−1) phonons, observed in Si–SiO2 multilayer nanocomposite (NCp) grown using pulsed laser deposition. Sensitivity of Raman spectroscopy as a local probe to surface/interface is effectively used to show that LW and HW phonons originate at surface (Si–SiO2 interface) and core of Si nanocrystals, respectively. The consistent picture of this understanding is developed using Raman spectroscopy monitored laser heating/annealing and cooling experiment at the site of the desired wavenumber, chosen with the help of Raman mapping. Raman spectra calculations for Si41 cluster with oxygen and hydrogen termination show strong mode at 512 cm−1 for oxygen terminated cluster corresponding to the vibration of surface Si atoms. This supports our attribution of LW phonons to be originating at the Si–SiO2 surface/interface. These results along with XPS show that nature of interface (oxygen bonding) in turn depends on the size of nanocrystals and LW phonons originate at the surface of smaller Si nanocrystals. The understanding developed can conclude the ongoing debate on large variation in Si phonon wavenumbers of Si–SiO2 NCps in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号