首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文讨论了混响室内的声强分布,指出混响室内声强分布与自由场一样,对点声源服从平方反比律。对混响室及消声室的声压及声强随时间的起伏作了初步摸索,得到了几条实验规律,指出声强起伏比声压起伏更大。采用声强测量方法对同—声源在消声室及混响室内的声功率输出作了测量,说明声源的声功率输出是随环境变化的声学量,在混响室内声源的低频发射要比消声室内的发射要低。  相似文献   

2.
张林  商德江 《应用声学》1997,16(2):37-42
根据双水听器法测量声强的基本原理,本文提出了基阵在湖中的布放及测量声强分布的实施步骤。通过对试验数据的处理与分析,给出了声强分布的三维力和等值曲线图,并利用扫描平面上的声强分布。计算出声源辐射的声功率。实验表明,本文提出的用列阵式双水听器声强测量系统,作平面扫描测量声强分布的方案是合理的;利用所测得的双平面近场声强分布来计算源的辐射也是可行的。  相似文献   

3.
声强的有旋性与表面声强   总被引:2,自引:0,他引:2  
本文应用复声强的概念,讨论了复声强的实部即有功声强的有旋性质。指出:在声场中真正传递声能量者仅是有功声强中的无旋分量。所以在应用双传声器声强测量法测量声功率时将受到有旋性的影响。有功声强的无旋分量与表面声强有关,因此测量表面声强可避免有旋性的影响。本文从自功率谱的角度给出了表面声强的有关计算公式,为表面声强测量提供了理论基础。  相似文献   

4.
岳舒  侯宏  于佳雨  王谦 《声学学报》2021,46(2):246-254
为了解决水下声源辐射声功率难以计算的问题,利用线阵声强缩放方法在波束形成声源识别的基础上,根据波束输出结果与声源辐射声功率之间的换算关系来获得相应的声功率。为了提高线阵声强缩放方法的水下声功率估算精度,给出了一定动态范围限制的主瓣区域积分方法,并通过仿真验证了该方法的有效性。在消声水池中开展了水下声功率估算的实验研究。在不同的测试距离下,对双声源条件下的单频以及宽带声源在阵列侧的辐射声功率进行了估算,以混响法的测量结果为参考值,研究了估算误差随声源频率、测试距离等影响因素的变化规律。实验结果表明,无论是单频还是宽带声源,声功率的最大估算误差不超过2.6 dB,在高频时不超过1.6 dB。验证了线阵声强缩放方法应用于水下声源辐射声功率估算的正确性与可行性。   相似文献   

5.
测定声源声功率级的新方法——正声强测量法   总被引:2,自引:0,他引:2       下载免费PDF全文
徐滇  郑郧 《应用声学》1991,10(3):9-15
本文通过对一般环境中声强场特性的研究分析,提出了一种测量噪声源声功率级的新方法——正声强测量法(PSIM).与国际标准草案ISO/DP 9614《声学:噪声源声功率级的测定方法——声强法》中的方法相比,正声强法对声场坏境要求较低,判别条件简单,省时,易推广.因此用正声强方法在现场测量机器辐射声功率很适合在工程测量中应用.文章给出了正声强测量方法的原理和初步测试结果.结果是令人满意的.  相似文献   

6.
岳舒  侯宏  王谦 《声学学报》2020,45(2):169-175
为了解决波束形成声源识别过程中声源辐射声功率定量计算的问题,给出了阵型简洁、便于组合的线阵声强缩放模型。通过推导线阵的声强缩放系数,建立起线阵波束输出结果与声源辐射声功率之间的换算关系。无论是线阵还是平面阵的声强缩放方法,对于偏离阵列中心位置较远处的声源进行辐射声功率估算时都存在较为明显的误差。通过理论推导和仿真模拟计算,研究了同一单极子点声源在不同位置处的声功率估算偏差随频率、幅度的变化规律,发现该估算偏差只与声源偏离位置有关,而与声源自身的强度信息无关的结论,据此给出了相应的声功率估算修正方法。半消声室实验结果和声压法测量结果对比表明:修正后的线阵声强缩放方法用于中高频声源的辐射声功率计算时,单频声源的估算误差不超过1.0 dB,宽带声源的估算误差不超过1.8 dB。   相似文献   

7.
李毅民 《应用声学》1995,14(3):44-46
本文介绍在数字声学测量分析系统中,通过双传声器信号互谱密度的计算进行声强及声功率测量的基本原理。该数学分析系统由微计算机,数字信号处理卡和A/D变换卡组成。在一个数字系统中,通过快速傅里叶变换(FET)进行互谱计算是十分有效的。本文着重介绍了,在声强的测量分析中对声强探头两传声器的固有相位差进行补偿的重要性和补偿方法,这是声强测量的重要环节。  相似文献   

8.
FFT分析仪-微机声强测量系统及其应用   总被引:5,自引:1,他引:4       下载免费PDF全文
本文讨论用HP 3562A动态信号分析仪与HP9000/320微机联机所组成的声强测量分析系统,利用自编软件进行声强的测量和分析。系统的输出功能有:50Hz—10kHz范围内各种频率分辨率的声强谱和声功率谱(线性或A计权,窄带或1/3倍频程分析),表面的三维声强图和等声强线图。以B&K4205标准声功率源和电动机为测量对象,与在半消声室内按ISO 3745测得的结果进行对比表明,本声强测量系统的精度能满足一般工程要求。最后还提供了应用本测量系统对一台车床的噪声幅射进行分析的实例。  相似文献   

9.
扫描声强法确定噪声源声功率数学模型   总被引:7,自引:0,他引:7  
建立了扫描声强法确定噪声源声功率的数学模型。在假定扫描速度恒定,稳态噪声源的前提下,对实际常用的测量面(矩形,园片,半球面)上的简单扫描路径进行了分析,结果表明,扫描法测量声功率的精度在很大程度上取决于扫描路径的确定,沿一些简单的路线能够获得精确的声功率结果。  相似文献   

10.
基于波束形成缩放声强的声源局部声功率计算   总被引:1,自引:0,他引:1  
褚志刚  杨洋 《声学学报》2013,38(3):265-271
基于波束形成法识别噪声源时,为计算主要噪声源的辐射声功率,给出了基于平面波模型的声强缩放方法,模拟计算了单极子点声源局部声功率的计算误差,结果显示:当阵列平面与声源计算平面间距离等于阵列直径时,基于波束形成缩放声强计算的声功率误差仅略高于0.1 dB。为克服旁瓣干扰,给出了具有一定动态范围的声源计算平面积分法,模拟计算了单极子点声源的局部声功率,结果表明:该积分法的计算值与主瓣区域积分法的计算值近似相等,均约等于理论声功率。进一步,波束形成法与声强法的对比算例试验验证了基于波束形成缩放声强计算声源局部声功率方法的有效性。   相似文献   

11.
陈继康 《应用声学》1988,7(1):19-22
本文报道了利用压强梯度法原理构成的便携式声强测量装置,该装置既能测量声强,也能测量声压的真有效值,还可以测量质点振动速度的真有效值,它是一种可以对声场的能量密度和能流密度进行综合分析的新型装置,为噪声分析,声功率测量和声源鉴别等项工作提供了一种新型测试手段。该装置能在100主5000Hz的频率范围内进行可靠的测量,使用方法简单,操作方便。  相似文献   

12.
研制了一套多通道水声声全息测量系统,解决了多通道系统的校准及弱散射水听器接收线阵的设计等问题。在非消声水池内,利用该系统对水下大面积平面发射声基阵进行了近场声全息实验,给出了声基阵表面的声强分布、声基阵各阵元及全阵的辐射声功率、基阵远场空间指向性图和指向性参数等。实验结果证明脉冲法和分区扫描数据合成的测量方法是可行的,实验系统的设计与实施方法可用于更大规模的声全息系统。  相似文献   

13.
室内脉冲声场中声强的测量研究   总被引:1,自引:0,他引:1  
采用多次重复发射的声源配合装置在缓慢转动平台上的接收传声器所组成的测量系统(简称为RRS),它等效于多个完全匹配的传声器组成的圆型阵列.文中着重阐述了借助此技术测量房间内脉冲声场中声强的时间与空间分布特性.阐明了以RRS测量入射脉冲声强的理论基础,分别对离散的脉冲声场及扩散声场提出了测量声强的定量关系式,对实验结果及应用作了分析与讨论.  相似文献   

14.
机械阻抗测量的一种新方法   总被引:3,自引:0,他引:3       下载免费PDF全文
明瑞森 《应用声学》1997,16(1):13-17,12
本文介绍了一种新的机械阻抗测量方法-声强法,由定义出发将机械阻抗表为功率流和加速度响应谱的函数,应用结构声强技术测量功率流,声强法不需要测量作用力信号,可以用于测量任意结构中的各类机械阻抗,实验结果表明,声强获得的测量值与直接获得的测量值相近,声强法能较准确地测量一维和二维匀质结构中机械阻抗。  相似文献   

15.
针对非消声水池的声学测量应用,提出了一种在界面起伏的非消声水池中测量水下声源辐射声功率的方法。基于数值方法分析了在非消声水池中利用起伏界面改善低频声源辐射声功率测量的可行性,进一步在一个尺寸为1.2 m×1.0 m×0.8 m的非消声水池中开展实验研究,测量了水声换能器的辐射声功率。实验表明,相对于界面静止的水池,利用造波装置生成随机起伏界面后,声场扩散性明显改善:(1)水池的Schroeder频率从10015 Hz降低到8370 Hz,辐射声功率的测量范围向低频扩展;(2)结合空间平均技术测得的频响曲线起伏程度减小,与自由场值更接近,辐射声功率的测量结果更为准确。所提方法有助于提高非消声水池中水下目标声学特性的测量能力。  相似文献   

16.
提出了一种联合扩散场(DAF)激励与近场声全息(NAH)辐射声强重建的建筑构件空气声隔声测量方法。该方法首先通过DAF激励构件振动并获取入射声功率,然后利用NAH技术从辐射声压场中重建构件表面高空间分辨率的法向声强分布,最后根据声强分布来计算辐射声功率和定位辐射热区,从而实现构件隔声量和隔声缺陷测量。隔声室实验研究表明,在测试距离和采样间距均为0.04 m的条件下,该方法测量的隔声量与声压法的误差在100~5000 Hz频带小于3.3 dB,在250~3150 Hz频带小于1.3 dB,对圆孔(直径8 mm)和矩形缝(长80 mm、宽3 mm)的定位精度高达厘米级;同时,该方法在一定混响和背景噪声影响下的稳定性较强,接收室混响时间从1.0 s增至3.4 s (步长0.6 s)以及信噪比从10 dB降至0 dB (步长5 dB),隔声量测量误差分别在0.8 dB和0.3 dB以内,缺陷定位误差在0.037 m和0.035 m以内。所提方法有助于提高实验室中建筑构件隔声特性的测量能力,同时对接收室测试环境具有较强的鲁棒性。  相似文献   

17.
用简易声强计测量声强   总被引:1,自引:0,他引:1  
本文介绍作者装置的一台简易声强计,实测误差与理论分析结果符合良好。组成声强计传感器的两个传声器之间的相对相移对测量结果有明显的影响,特别是在频率低端会产生很大的误差,作者通过使用倒向平均法降低了误差。消声室和混响室里的模拟实验结果证实了声强测量能可靠地在现场确定声源的声功率。  相似文献   

18.
结构声强技术测量墙体结构中弯曲波耦合功率流   总被引:2,自引:0,他引:2       下载免费PDF全文
虽然结构声强技术已成功地应用于匀质薄壁结构,但在建筑结构的应用研究只是一些定性的探讨,本文应用结构声强技术研究建筑结构中弯曲波声强的测量,以传统方法获得的结构总损耗能量测量值为参考,基于95%合成置信区间研究弯曲波声强的测量精度,初步探讨了结构声强技术在建筑中应用的可行性。  相似文献   

19.
为将半导体激光器用于构建声光效应及声速声强测量教学实验装置,推导了超声光栅远场衍射光场分布,给出了超声光栅相位调制系数分别与声强和各级衍射光强度的关系,总结了从衍射光场图像提取声强值的数据处理方法.通过建立交替使用氦氖激光器或半导体激光器的实验系统,进行了液体中超声声强测量的比较实验,验证了半导体激光器作为光源实现声光衍射法超声声强测量的可行性.  相似文献   

20.
李双  陈克安 《声学学报》2007,32(6):503-510
有源声学结构是近年来提出的降低结构低频声辐射的有效方案,对其降噪中的物理机制进行分析将为系统优化设计、次级源和误差传感器布放及控制目标选取等关键问题提供直接指导。文中在最小辐射声功率条件下,从控制前后初、次级结构的辐射声功率变化以及声场中声强的分布来阐述降噪中的物理机制,研究结果表明:降噪中的能量转换分为能量抑制、能量吸收及能量反吸收三种机制;对于近场声强分布,有源控制效果主要通过声强幅度抑制和声强方向调整两种机制体现,部分区域的声能量在控制前向远场传递,控制后则流向声源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号