首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Transparent Si-doped TiO2 thin films (Si-TiO2) were deposited on quartz glasses using electron beam evaporation (EBE) and annealed at different temperature in an air atmosphere. The structure and morphology of these films were analyzed by X-ray diffraction (XRD), Raman microscopy (Raman), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Meanwhile the photocatalytic activity of the films has also been evaluated on the basis of the degradation degree of rhodamine B in aqueous solution. Our experimental results suggest that the annealing temperature impact a strong effect on the structure, morphology and photocatalytic activity of Si-TiO2 thin films. Furthermore the enhanced thermal stability of Si-TiO2 films enabled them to elevate the phase transformation temperature of TiO2 from anatase to rutile and enhanced the photocatalytic efficiency.  相似文献   

2.
In this paper we report on the effect of annealing on the microsctructural and optoelectronic properties of titanium dioxide (TiO2) thin films prepared using sol-gel method onto silicon (Si) (100) and quartz substrates. The annealing temperatures range from 200 to 1000 °C. The Microstructural properties of annealed thin films were investigated by Thermal gravimetric analyses (TGA), X-ray diffraction (XRD) and Raman Spectroscopy. The surface morphology of the film was examined using Atomic Force Microscopy (AFM) method. The optical properties of TiO2 thin films were characterized using UV-VIS and Spectroscopic ellipsometry. The results have shown that the TiO2 thin films persist in the anatase phase even after annealing at 800 °C. The phase transformation from anatase to rutile occurred only when the films were annealed at 1000 °C. AFM studies revealed nanocrystalline structure where their shape and density depend strongly on the annealing temperatures. The elaborated nanostructured-TiO2 thin films present a high transparency in the visible range. Spectroscopic ellipsometry (SE) study was used to determine the effect of annealing temperature on the thickness and on the optical constant of TiO2 thin films. Spectroscopic ellipsometry and UV-VIS shows that the band gap of TiO2 thin films was found to decrease when the annealing temperature increases. The Anatase phase was find to show higher photocatalytic activity than the rutile one.  相似文献   

3.
The photocatalytic activity of thin, nanostructured films of titanium dioxide, synthesized by supersonic cluster beam deposition (SCBD) from the gas phase, has been investigated employing the photodegradation of salicylic acid as test reaction. Because of the low deposition energy, the so-deposited highly porous TiO2 films are composed of nanoparticles maintaining their original properties in the film, which can be fully controlled by tuning the deposition and post-deposition treatment conditions. A systematic investigation on the evolution of light absorption properties and photoactivity of the films in relation to their morphology, determined by AFM analysis, and phase composition, determined by Raman spectroscopy, has been performed. The absorption and photocatalytic activity of the nanostructured films in the visible region could be enhanced either through post-deposition annealing treatment in ammonia containing atmosphere or employing mild oxidation conditions, followed by annealing in N2 at 600 °C.  相似文献   

4.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

5.
TiO2 nanotubes (NTs) are synthesized by anodization of a titanium foil in organic electrolytes, followed by thermal treatment in O2 at different temperatures. These TiO2 NTs exhibit visible-light photocatalytic activity which strongly depends on the formation of the thin surface carbon layer induced by dissociation of the electrolytes. Microstructural and spectral examinations suggest that the presence of the thin carbon layer and improved TiO2 crystallinity achieved by annealing at a higher temperature conjointly lead to the enhanced photocatalytic activity. Our results disclose that the visible photocatalytic activity of TiO2 NTs can be enhanced by using the appropriate electrolytes and thermal treatment conditions.  相似文献   

6.
In this work photocatalytic properties of TiO2 thin films doped with different amount of Tb have been described. Thin films were prepared by high energy reactive magnetron sputtering process. Comparable photocatalytic activity has been found for all doped TiO2 thin films, while different amounts of Tb dopant (0.4 and 2.6 at. %) results in either an anatase or rutile structure. It was found that the terbium dopant incorporated into TiO2 was also responsible for the amount of hydroxyl groups and water particles adsorbed on the thin film surfaces and thus photocatalytic activity was few times higher in comparison with results collected for undoped TiO2 thin films.  相似文献   

7.
In the present work anatase–rutile transformation temperature and its effect on physical/chemical properties as well as photocatalytic activity of TiO2 particles were investigated. The characterisation of the synthesised and annealed TiO2 particles were determined by X-Ray Powder Diffraction (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS) and Brunauer–Emmett–Teller surface area analysis (BET). The refraction in the ultraviolet–visible (UV–vis) range was assessed using a dual-beam spectrophotometer. The photocatalytic performance of the particles was tested on methylene blue solution. The XRD data indicated that the percentage of rutile increased with the annealing temperature and almost 100% of anatase transformed to rutile at 1000 °C. In addition, the phase transformation was a linear function of annealing temperature so phase composition of TiO2 can be controlled by changing the annealing temperature. The SEM and BET results presented the increase of agglomerate size and the decrease of specific surface area with the increasing annealing temperature. This proved that anatase has smaller particle size and higher surface area than rutile. The photocatalytic activity of the annealed TiO2 powders reduced with the increase of annealing temperature. The samples annealed at 900 °C and 925 °C with anatase: rutile ratio of 92:8 and 77:23, respectively, showed the best activity. These results suggested that the photocatalytic activity of TiO2 particles is a function of phase composition. Thus it can be enhanced by changing its phase composition which can be controlled by annealing temperature.  相似文献   

8.
Nanostructured TiO2 thin films have been prepared through chemical route using sol-gel and spin coating techniques. The deposited films were annealed in the temperature range 400–1000°C for 1 h. The structure and microstructure of the annealed films were characterized by GAXRD, micro-Raman spectroscopy and AFM. The as-deposited TiO2 thin films are found to be amorphous. Micro-Raman and GAXRD results confirm the presence of the anatase phase and absence of the rutile phase for films annealed up to 700°C. The diffraction pattern of the film annealed at 800 to 1000°C contains peaks of both anatase and rutile reflections. The intensity of all peaks in micro-Raman and GAXRD patterns increased and their width (FWHM) decreased with increasing annealing temperature, demonstrating the improvement in the crystallinity of the annealed films. Phase transformation at higher annealing temperature involves a competition among three events such as: grain growth of anatase phase, conversion of anatase to rutile and grain growth of rutile phase. AFM image of the asdeposited films and annealed films indicated exponential grain growth at higher temperature.   相似文献   

9.
Optical, structural and photocatalytic properties of TiO2 thin films obliquely deposited on quartz glass substrate using an electron-beam evaporation method were investigated. The photocatalytic activity of the films was evaluated by photodecomposition of methylene blue. An increase in incident deposition angle increased the porosity and surface roughness of the TiO2 films. As a result, the photocatalytic activity was enhanced with incident deposition angle up to 60°. However, a further increase in incident deposition angle to 75° reduced the photocatalytic activity due to a lack of the crystalline phase.  相似文献   

10.
丁芃  刘发民  杨新安  李建奇 《物理学报》2011,60(3):36803-036803
利用直流磁控溅射技术在玻璃衬底上沉积了TiO2薄膜,并对其进行了Co离子注入,最后在真空中500 ℃退火50 min,得到系列薄膜样品. 利用剥离-分散方法制备了薄膜的透射电镜样品,并用扫描电镜(SEM)、X射线能量散射谱(EDX)和高分辨透射电镜(HRTEM)对样品做了近似原位观察,研究了薄膜样品中不同Co离子注入深度的成分分布和显微结构. 结果表明,薄膜呈锐钛矿结构,Co元素主要分布在薄膜表层,Co离子的注入使TiO2薄膜的晶粒被部分破坏,并形成CoO,而5 关键词: 2薄膜')" href="#">Co注入TiO2薄膜 电镜原位观察 室温铁磁性  相似文献   

11.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

12.
《Current Applied Physics》2014,14(9):1304-1311
We report a successful fabrication of 300 nm thick carbon nanotubes and Pb(Zr0.52Ti0.48)O3 (CNT–PZT) nanocomposite thin films with annealing temperature as low as 500 °C in H2/N2 atmosphere. Realizing the thickness of CNT–PZT nanocomposite thin films down to few hundred nanometers is one way to reduce the operating voltage of its application to micro- or nano-electromechanical system. The field emission scanning electron microscopic and atomic microscopic analysis revealed that the nanocomposite thin films annealed in H2/N2 atmosphere exhibits the most favorable surface morphology with adequate perovskite (111) reflection of PZT based on X-ray diffraction analysis. The measured dielectric constant and loss tangent of the nanocomposite thin films show that the annealing duration of 30 min promotes the optimum dielectric properties of the nanocomposite thin films. Our observations suggest that the annealing atmosphere and duration are important parameters in controlling the crystallization behavior hence the dielectric properties of the nanocomposite thin films, which can be readily applicable to other nanocomposite thin films.  相似文献   

13.
Titanium dioxide (TiO2) thin films with different nanostructures such as nano-particles and separated vertical columns were grown by glancing angle deposition (GLAD) in an electron beam evaporation system. The photocatalytic properties of grown TiO2 films with different deposition angles and different annealing temperatures were evaluated by following decomposition of methyl orange under ultraviolet (UV) light irradiation. The results suggest that increased surface area due to the GLAD process could improve the photocatalytic properties of TiO2 films.  相似文献   

14.
The effect of annealing conditions on structural and magnetic properties of copper ferrite thin films on (100) Si substrates was examined in detail. After deposition, the ferrite thin films were post-annealed in vacuum and in oxygen atmosphere for several hours. It is found that the crystal structure of CuFe2O4 thin films changed drastically depending on different heating process. A maximum magnetization was achieved in the film that was vacuum annealed and it decreased remarkably after oxygen annealing.  相似文献   

15.
Nanostructured TiO2 thin films were deposited on quartz glass at room temperature by sol–gel dip coating method. The effects of annealing temperature between 200C to 1100C were investigated on the structural, morphological, and optical properties of these films. The X-ray diffraction results showed that nanostructured TiO2 thin film annealed at between 200C to 600C was amorphous transformed into the anatase phase at 700C, and further into rutile phase at 1000C. The crystallite size of TiO2 thin films was increased with increasing annealing temperature. From atomic force microscopy images it was confirmed that the microstructure of annealed thin films changed from column to nubbly. Besides, surface roughness of the thin films increases from 1.82 to 5.20 nm, and at the same time, average grain size as well grows up from about 39 to 313 nm with increase of the annealing temperature. The transmittance of the thin films annealed at 1000 and 1100C was reduced significantly in the wavelength range of about 300–700 nm due to the change of crystallite phase. Refractive index and optical high dielectric constant of the n-TiO2 thin films were increased with increasing annealing temperature, and the film thickness and the optical band gap of nanostructured TiO2 thin films were decreased.  相似文献   

16.
In the present paper, we have reported the room temperature growth of antimony sulphide (Sb2S3) thin films by chemical bath deposition and detailed characterization of these films. The films were deposited from a chemical bath containing SbCl3 and Na2S2O3 at 27 °C. We have analysed the structure, morphology, composition and optical properties of as deposited Sb2S3 films as well as those subjected to annealing in nitrogen atmosphere or in air. As-deposited films are amorphous to X-ray diffraction (XRD). However, the diffused rings in the electron diffraction pattern revealed the existence of nanocrystalline grains in these films. XRD analysis showed that upon annealing in nitrogen atmosphere these films transformed into polycrystalline with orthorhombic structure. Also, we have observed that during heating in air, Sb2S3 first converts into orthorhombic form and then further heating results in the formation of Sb2O3 crystallites. Optical bandgap energy of as deposited and annealed films was evaluated from UV-vis absorption spectra. The values obtained were 2.57 and 1.73 eV for the as-deposited and the annealed films respectively.  相似文献   

17.
For photocatalytic thin film applications TiO2 is one of the most important materials. The most studied TiO2 crystal phase is anatase, though also rutile and brookite show good photoactivity. Usually anatase or a mixture of rutile and anatase is applied for powder or thin film catalysts. It has been claimed that amorphous films do not exhibit any or only a very low photocatalytic activity.We have deposited amorphous thin films by dc magnetron sputtering from sub-stoichiometric TiO2−x targets. The coatings are transparent and show a photocatalytic activity half of that of a thin layer of spin-coated reference photocatalyst powder. Annealing the thin films to yield anatase crystallization more than doubles their photocatalytic activity. At the same film thickness these thin films show the same activity as a commercially available photocatalytic coating.The dependence of the photocatalytic activity on deposition parameters like gas pressure and sputter power is discussed. A decrease in film density, as deduced from the refractive index and the microstructure, resulted in an increase in photocatalytic activity. Film thickness has a marked influence on the photocatalytic activity, showing a strong increase up to 300-400 nm, followed by a much shallower slope.  相似文献   

18.
ZnO thin films were epitaxially grown on sapphire (0 0 0 1) substrates by radio frequency magnetron sputtering. ZnO thin films were then annealed at different temperatures in air and in various atmospheres at 800 °C, respectively. The effect of the annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films are investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL). A strong (0 0 2) diffraction peak of all ZnO thin films shows a polycrystalline hexagonal wurtzite structure and high preferential c-axis orientation. XRD and AFM results reveal that the better structural quality, relatively smaller tensile stress, smooth, uniform of ZnO thin films were obtained when annealed at 800 °C in N2. Room temperature PL spectrum can be divided into the UV emission and the Visible broad band emission. The UV emission can be attributed to the near band edge emission (NBE) and the Visible broad band emission can be ascribed to the deep level emissions (DLE). By analyzing our experimental results, we recommend that the deep-level emission correspond to oxygen vacancy (VO) and interstitial oxygen (Oi). The biggest ratio of the PL intensity of UV emission to that of visible emission (INBE/IDLE) is observed from ZnO thin films annealed at 800 °C in N2. Therefore, we suggest that annealing temperature of 800 °C and annealing atmosphere of N2 are the most suitable annealing conditions for obtaining high quality ZnO thin films with good luminescence performance.  相似文献   

19.
Molybdenum oxide (MoO3) thin films were deposited by electron beam evaporation. The chemical composition, microstructure, optical and electrical properties of MoO3 thin films depend on the annealing temperature and ambient atmosphere. X-ray diffraction (XRD) shows that crystalline MoO3 films can be obtained at various post-annealing temperatures from 200 to 500 °C in N2 and O2. X-ray photoelectron spectroscopy (XPS) results reveal that the O-1s emission peak was shifted slightly toward lower binding energies as the annealing temperature in N2 was increased. The oxygen vacancies and conductivity of MoO3 film increased with the annealing temperature. However, when the MoO3 films were annealed in an atmosphere of O2, the optical transmission, the O/Mo ratio and the photon energy increased with the annealing temperature. The results differ from those for films annealed in a N2 atmosphere.  相似文献   

20.
HfNxOy thin films were deposited on Si substrates by direct-current sputtering. The influence of N2 ambient annealing on the morphology, structure and field emission properties of the HfNxOy thin films was studied systematically. Scanning electron microscopy indicates that both the as-deposited and the annealed films are composed of nanoparticles, and the particle sizes of these films do not change much before and after annealing. Atomic force microscopy shows that the surface of the as-deposited films is smooth while that of the annealed films becomes rough, with many protrusions. X-ray diffraction patterns demonstrate that the as-deposited films are amorphous while the samples annealed at over 500 °C are polycrystalline. It is found that the field electron emission properties of the annealed films are better than those of the as-deposited films. The film annealed at 800 °C shows the best field emission properties. The mechanism for the improvement of the field electron emission property of the annealed thin films is also discussed. PACS 73.61.-r; 79.70.+q; 81.05.-t  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号