首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent and conducting TiO2/Au/TiO2 (TAuT) films were deposited by reactive magnetron sputtering on polycarbonate substrates to investigate the effect of the Au interlayer on the optical, electrical, and structural properties of the films. In TAuT films, the Au interlayer thickness was kept at 5 nm. Although total thickness was maintained at 100 nm, the stack structure was varied as 50/5/45, 70/5/25, and 90/5/5 nm.In XRD pattern, the intermediate Au films were crystallized, while all TAuT films did not show any diffraction peaks for TiO2 films with regardless of stack structure. The optical and electrical properties were dependent on the stack structure of the films. The lowest sheet resistance of 23 Ω/□ and highest optical transmittance of 76% at 550 nm were obtained from TiO2 90 nm/Au 5 nm/TiO2 5 nm films. The work function was dependent on the film stack. The highest work function (4.8 eV) was observed with the TiO2 90 nm/Au 5 nm/TiO2 5 nm film stack. The TAuT film stack of TiO2 90 nm/Au 5 nm/TiO2 5 nm films is an optimized stack that may be an alternative candidate for transparent electrodes in flat panel displays.  相似文献   

2.
Daeil Kim 《Optics Communications》2010,283(9):1792-1794
Au-intermediate TiO2/Au/TiO2 (TAT) multilayer films were deposited by RF magnetron sputtering onto glass substrates. Changes in the optical and electrical properties of the films were investigated with respect to the thickness of the Au interlayer.The observed optical and electrical properties were dependent on the thickness of the Au interlayer. The resistivity decreased to 3.3 × 10−4 Ω cm for TiO2 films with a 20 nm-thick Au interlayer and the optical transmittance was also influenced by the Au interlayer. Although optical transmittance deteriorated as Au thickness increased, TiO2 films with a 5 nm-thick Au interlayer showed a relatively high optical transmittance of 80% at a wavelength of 550 nm. In addition, since a TAT film with a 5 nm-thick Au interlayer showed a relatively high work function value, it is an alternative candidate for use as a transparent anode in OLEDs and flat panel displays.  相似文献   

3.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

4.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

5.
This study investigated the optical and electrical properties of Nb-doped TiO2 thin films prepared by pulsed laser deposition (PLD). The PLD conditions were optimized to fabricate Nb-doped TiO2 thin films with an improved electrical conductivity and crystalline structure. XRD analyses revealed that the deposition at room temperature in 0.92 Pa O2 was suitable to produce anatase-type TiO2. A Nb-doped TiO2 thin film attained a resistivity as low as 6.7 × 10−4 Ω cm after annealing at 350 °C in vacuum (<10−5 Pa), thereby maintaining the transmittance as high as 60% in the UV-vis region.  相似文献   

6.
M.S. Chen 《Surface science》2007,601(3):632-637
The growth of Au on an ultra-thin, ordered Mo(1 1 2)-(8 × 2)-TiOx, was investigated using scanning tunneling microscopy (STM), low energy ion scattering spectroscopy (LEISS), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption (TPD). Wetting of the TiOx surface by Au was observed with STM and LEISS, and the ordering of the Au films was atomically resolved with STM. TPD showed that Au binds more strongly to the reduced TiOx film than to bulk TiO2, but more weakly than to the Mo substrate. The Au-TiOx binding energy is greater than Au-Au in bulk Au. The oxidation state of Ti in the TiOx film was deduced by XPS and from the Ti-O phonon shifts relative to bulk TiO2. The TiOx/Mo(1 1 2) film structure and those for the (1 × 1)- and (1 × 3)-Au/TiOx/Mo(1 1 2) surfaces are discussed.  相似文献   

7.
ZrNx films were sputtered in an Ar + N2 atmosphere, with different substrate biases (0 to −200 V) at various nitrogen flow ratios (%N2 = 0.5-24%). The surface morphology, resistivity, crystllinity, and bonding configuration of ZrNx films, before and after vacuum annealing, were investigated. As compared with ZrNx films grown without substrate bias, before and after annealing, the resistivity of 1% and 2% N2 films decreases with increasing substrate biases. Simultaneously, if the applied bias is too high, the crystallinity of ZrNx film will decrease. The surfaces of 1% and 2% N2 flow films deposited without bias have small nodules, whereas the surface morphology of films deposited at −100 V of substrate bias exhibits large nodules and rugged surface. Once a −200 V of substrate bias is applied to the substrate, the surface morphology of ZrNx films, grown at 1% and 2% nitrogen flow ratios, is smooth. Furthermore, there are two deconvoluted peaks in XPS spectra (i.e., Zr-O and Zr-N) of ZrNx films deposited at −200 V of substrate bias before and after annealing. On the other hand, the surface morphology changes dramatically from rugged surfaces for film deposited at lower nitrogen flow ratio (%N2 < 1%) to smoother and denser surfaces for film grown at higher nitrogen flow ratio (%N2 ≥ 1%). The Zr-N bonding in 2% N2 films still exist after annealing at 700 °C, while the Zr-N bonding in 0.5% and 16% N2 flow film vanish at the same temperature. The connection between the resistivity, crystallinity, surface morphology, and bonding configuration of ZrNx films and how they are influenced by the substrate bias and nitrogen flow ratio are discussed in this paper.  相似文献   

8.
Aluminum doped zinc oxide (AZO) films were substitutes of the SnO2:F films on soda lime glass substrate in the amorphous thin-film solar cells due to good properties and low cost. In order to improve properties of AZO films, the TiO2 buffer layer had been introduced. AZO films with and without TiO2 buffer layer were deposited on soda lime glass substrates by r.f. magnetron sputtering. Subsequently, one group samples were annealed in vacuum (0.1 Pa) at 500 °C for 120 s using the RTA system, and the influence of TiO2 thickness on the properties of AZO films had been discussed. The XRD measurement results showed that all the films had a preferentially oriented (0 0 2) peak, and the intensity of (0 0 2) peak had been enhanced for the AZO films with TiO2 buffer layer. The resistivity of TiO2 (3.0 nm)/AZO double-layer film is 4.76×10−4 Ω cm with the maximum figure merit of 1.92×10−2 Ω−1, and the resistivity has a remarkable 28.7% decrease comparing with that of the single AZO film. The carrier scattering mechanism of TiO2 (3.0 nm)/AZO double-layer film had been described by Hall measurement in different temperatures. The average transmittance of all the films exceeded 92% in the visible spectrum. Another group samples were heat treated in the quartz tube in air atmosphere, and the effect of TiO2 thickness on thermal stability of AZO films had been discussed.  相似文献   

9.
CoPt-TiO2 nanocomposite films were synthesized by rapid thermal annealing of CoPt/TiO2 multilayers. The effects of annealing temperature, annealing time, Ag addition and TiO2 volume fraction on the microstructures and magnetic properties of the CoPt-TiO2 nanocomposite films were studied. Results showed that the ordering degree of CoPt and coercivity of CoPt-TiO2 nanocomposites increased with annealing temperature. Increasing annealing time and Ag addition were able to increase the ordering degree and coercivity of CoPt. However, complete L10-ordering of CoPt at 550 °C annealing was not realized by increasing annealing time up to 30 min and Ag addition up to 30 vol.%. Increasing TiO2 volume fraction at 700 °C annealing did not lead to the change of ordering of CoPt. However, the grain structure of the films changed slightly when TiO2 volume fraction was larger than 56%. The coercivity of the film decreased slightly with the addition of TiO2.  相似文献   

10.
Co-doped TiO2 films were fabricated under different conditions using reactive facing-target magnetron sputtering. Co doping improves the transformation of TiO2 from anatase phase to rutile phase. The chemical valence of doped Co in the films is +2. All the films are ferromagnetic with a Curie temperature above 340 K. The average room-temperature moment per Co of the Co-doped TiO2 films fabricated at 1.86 Pa decreases from 0.74 μB at x=0.03 to 0.02 μB at x=0.312, and decreases from 0.54 to 0.04 μB as x increases from 0.026 to 0.169 for the Co-doped TiO2 films fabricated at 0.27 Pa. The ferromagnetism originates from the oxygen vacancies created by Co2+ dopants at Ti4+ cations. The optical band gaps value (Eg) of the Co-doped TiO2 films fabricated at 1.86 Pa decreases linearly from 3.35 to 2.62 eV with the increasing x from 0 to 0.312. For the Co-doped TiO2 films fabricated at 1.86 Pa, the Eg decreases linearly from 3.26 to 2.53 eV with increasing x from 0 to 0.350.  相似文献   

11.
The article reports on correlations between the process parameters of reactive pulsed dc magnetron sputtering, physical properties and the photocatalytic activity (PCA) of TiO2 films sputtered at substrate surface temperature Tsurf ≤ 180 °C. Films were deposited using a dual magnetron system equipped with Ti (Ø50 mm) targets in Ar + O2 atmosphere in oxide mode of sputtering. The TiO2 films with highly photoactive anatase phase were prepared without a post-deposition thermal annealing. The decomposition rate of the acid orange 7 (AO7) solution during the photoactivation of the TiO2 film with UV light was used for characterization of the film PCA. It was found that (i) the partial pressure of oxygen pO2 and the total sputtering gas pressure pT are the key deposition parameters influencing the TiO2 film phase composition that directly affects its PCA, (ii) the structure of sputtered TiO2 films varies along the growth direction from the film/substrate interface to the film surface, (iii) ∼500 nm thick anatase TiO2 films with high PCA were prepared and (iv) the structure of sputtered TiO2 films is not affected by the substrate surface temperature Tsurf when Tsurf < 180 °C. The interruption of the sputtering process and deposition in long (tens of minutes) pulses alternating with cooling pauses has no effect on the structure and the PCA of TiO2 films and results in a decrease of maximum value of Tsurf necessary for the creation of nanocrystalline nc-TiO2 film. It was demonstrated that crystalline TiO2 films with high PCA can be sputtered at Tsurf ≤ 130 °C. Based on obtained results a phase zone model of TiO2 films was developed.  相似文献   

12.
Lei Zhao 《Applied Surface Science》2008,254(15):4620-4625
Nitrogen-doped titanium dioxide (TiO2−xNx) thin films have been prepared by pulse laser deposition on quartz glass substrates by ablated titanium dioxide (rutile) target in nitrogen atmosphere. The x value (nitrogen concentration) is 0.567 as determined by X-ray photoelectron spectroscopy measurements. UV-vis spectroscopy measurements revealed two characteristic deep levels located at 1.0 and 2.5 eV below the conduction band. The 1.0 eV level is attributable to the O vacancy state and the 2.5 eV level is introduced by N doping, which contributes to narrowing the band-gap by mixing with the O2p valence band. The enhanced degradation efficiency in a broad visible-light range was observed from the degradation of methylene blue and methylene orange by the TiO2−xNx film.  相似文献   

13.
The evolution of the crystal, the microstructural and the optical properties of pulsed-laser deposited TiO2 films, investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, optical transmittance and m-line spectroscopy measurements are reported. The samples were grown on (0 0 1) SiO2 substrates at temperatures from 250 to 600 °C and oxygen pressures from 1 to 15 Pa. Crystalline films consisting of single anatase or anatase and rutile phases, were obtained at temperatures higher than 400 °C. A tendency toward columnar-like growth morphology was observed in the samples. Strong dependence of the optical properties on the surface roughness and the microstructure was determined. All films revealed single-mode waveguiding and optically anisotropic properties.  相似文献   

14.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

15.
The tunable optical constants of the stoichiometric (ZrO2)x-(Al2O3)1−x composite films with thin inserted TiO2 layers are simulated as π-phase shifters. The optimized composition range of the superlattices to be used as a high transmission attenuated phase shift mask (HT-APSM) blank is found. The absorption edge shifts to the longer wavelengths when the thickness fraction of the TiO2 layer increases. The optimized film for ArF-line HT-APSM blank applications must have the lower inspection transmittance for the better inspection and the lower reflectance at the exposure wavelength for a better aerial image as π-phase shifters, and they will be easier to fabricate than a superlattice. In order to find such a film, (ZrO2)x-(Al2O3)1−x composite films with various inserted TiO2 layers are simulated. The optimal deposition processes of such a film are also determined. For example, a (ZrO2)0.187-(Al2O3)0.813 composite film with two inserted TiO2 thin layers is fabricated. The optical properties are as follows: a transmittance of 19.8%, a reflectance of 9.1%, a calculated phase shift of ∼181.5° at the exposure wavelength of 193 nm, and a transmittance of 18.9% at the inspection wavelength of 257 nm. Such a film should be used as an optimized HT-APSM blank.  相似文献   

16.
Increasing environmental pollution caused by the volatile organic compounds due to their toxicity makes their removal imperative. So it is crucial to develop processes which can degrade these compounds effectively. The paper demonstrates that the photocatalytic activity of TiO2 toward the decomposition of gaseous benzene in a batch reactor can be greatly enhanced by loading TiO2 onto the surface of CexZr1−xO2 (x ≥ 0.25) using sol-gel technology. This research investigated the relationship between x amount and the photocatalytic activity of TiO2. The prepared photocatalysts were characterized by BET, XRD, UV-vis diffuse reflectance and XPS analyses. The specific surface area of photocatalyst decreases as x decreases. XRD results reveal the no peaks of titania were detected. Among the five catalysts prepared, only the binding energy values of Ti2p3/2 of TiO2/Ce0.5Zr0.5O2 shift toward lower value. The order of photocatalytic activity is TiO2/Ce0.5Zr0.5O2 > TiO2/Ce0.75Zr0.25O2 > TiO2/CeO2 ≈ TiO2/Ce0.25Zr0.75O2 > TiO2/ZrO2 ≈ TiO2. The mechanism role of Ceria-Zirconia mixed oxides in photocatalytic reaction was speculated.  相似文献   

17.
Micro-arrayed patterns of p-type copper sulfide (CuxS) thin films with positive and negative features were deposited onto the surfaces of n-type TiO2 semiconductor films via a selective nucleation and growth process from aqueous solution. The surface functional molecules of the UV photo-oxidised patterned SAMs were utilized to direct the nucleation and growth of CuxS crystallites. The resultant CuxS/TiO2 composite films with negative and positive CuxS patterns on the TiO2 film surface were investigated using SEM, XRD, XPS and a 3D Surface Profiler. It is demonstrated that regular and compact patterned films of Cu2S crystallites had been deposited onto the n-type TiO2 surface, with sharp edges demarcating the boundaries between the patterned Cu2S region and the TiO2 film region. The UV-vis spectra for three Cu2S/TiO2 films exhibit a wide absorption between 300 nm and 450 nm. The maximum wavelength differences in the spectra of Cu2S/TiO2 films and TiO2 film were attributed to the added absorption of Cu2S films at 302 nm and the unchanged adsorption of TiO2 films. The absorption intensities of the Cu2S/TiO2 films could be varied in the UV-vis range using the Cu2S patterned features (positive, negative).  相似文献   

18.
The normal incidence X-ray standing wave (NIXSW) technique has been applied to investigate the structure of ultra-thin VOx films grown on TiO2(1 1 0) and pre-characterised by core level photoemission. For a film composed of a sub-monolayer coverage of V deposited in ultra-high vacuum the local structure of two coexistent species, labelled ‘oxidic’ and ‘metallic’, has been investigated independently through the use of chemical-shift-NIXSW. The ‘oxidic’ state is shown to be consistent with a mixture of epitaxial or substitutional sites and chemisorption into sites coordinated to three surface O atoms. The metallic V atoms also involve a mixture of chemisorption and second-layer sites above the substrate surface consistent with the formation of small V clusters. VOx films up to ∼6 atomic layers were also grown by post-oxidation (sequential V deposition and annealing in oxygen) and by reactive evaporation in a partial pressure of oxygen. While films of around one monolayer or less are consistent with epitaxial VO2 growth, the film quality deteriorates rapidly with increasing thickness and is worse for reactive evaporation. A possible interpretation of the NIXSW data is increasing contributions of V2O3 crystallites. The inferior quality of the reactively evaporated films may be due to an insufficient supply of oxygen.  相似文献   

19.
SiCxNy thin films with different nitrogen contents were deposited by way of incorporation of different amounts of nitrogen into SiC0.70 using unbalanced reactive dc magnetron sputtering method. Their phase configurations, nanostructures and mechanical behaviors were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM) and microindentation methods. The result indicated SiC0.70 and all SiCxNy thin films exhibited amorphous irrespective of the nitrogen content. The phase configuration and mechanical behaviors of SiCxNy thin films strongly depended on nitrogen content. SiC0.70 exhibited a mixture consisting of SiC, Si and a small amount of C. Incorporated nitrogen, on one hand linked to Si, forming SiNx, on the other hand produced CNx and C at the expense of SiC. As a result, an amorphous mixture consisting of SiC, SiNx, C and CNx were produced. Such effects were enhanced with increase of nitrogen content. A low hardness of about 16.5 GPa was obtained at nitrogen-free SiC0.70. Incorporation of nitrogen or increase of nitrogen content increased the film hardness. A microhardness maximum of ∼29 GPa was obtained at a nitrogen content of 15.7 at.%. This value was decreased with further increase of N content, and finally a hardness value of ∼22 GPa was obtained at a N content of ∼25 at.%. The residual compressive stress was consistent with the hardness in the nitrogen content range of 8.6-25.3 at.%.  相似文献   

20.
Porous TiO2 films were deposited on SiO2 pre-coated glass-slides by sol-gel method using octadecylamine (ODA) as template. The amount of ODA in the sol played an important role on the physicochemical properties and photocatalytic performance of the TiO2 films. The films prepared at different conditions were all composed of anatase titanium dioxide crystals, and TiO2 crystalline size got larger with increasing ODA amount. The maximum specific surface area of 41.5 m2/g was obtained for TiO2 powders prepared from titanium sol containing 2.0 g ODA. Methyl orange degradation rate was enhanced along with increasing ODA amount and reached the maximal value at 2.0 g addition of ODA. After 40 min of UV-light irradiation, methyl orange degradation rate reached 30.5% on the porous film, which was about 10% higher than that on the smooth film. Porous TiO2 film showed almost constant activity with slight decrease from 30.5% to 28.5% after 4 times of recycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号