首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chao Ma 《中国物理 B》2022,31(8):84206-084206
A novel high-energy picosecond optical parametric oscillator (OPO) was realized by placing an OPO in a second-harmonic (SH) cavity. In a proof-of-principle experiment, we demonstrated excellent burst energy of 45 μJ for the OPO signal at 900 nm that operates at a pulse repetition rate of 10 kHz and a pulse width of 46.8 ps. The beam quality was measured as $M^{2}_{x} = 1.44$ and $M^{2}_{y} = 1.40$ in the orthogonal directions, corresponding to an average beam factor $M^{2} = 1.42$. So far, this study is the first to investigate high-energy ps OPO synchronously pumped in a second-harmonic cavity.  相似文献   

2.
《中国物理 B》2021,30(5):50603-050603
We report construction of an iodine-stabilized laser frequency standard at 532 nm based on modulation transfer spectroscopy(MTS) technology with good reproducibility. A frequency stability of 2.5 × 10~(-14) at 1 s averaging time is achieved,and the frequency reproducibility has a relative uncertainty of 3.5×10~(-13), demonstrating the great stability of our setup.The systematic uncertainty of the iodine-stabilized laser frequency standard is evaluated, especially the contribution of the residual amplitude modulation(RAM). The contribution of the RAM in MTS cannot be evaluated directly. To solve this problem, we theoretically deduce the MTS signal with RAM under large modulation depth, and prove that the nonsymmetric shape of the MTS signal is directly related to the MTS effect. The non-symmetric shape factor r can be calibrated with a frequency comb, and in real experiments, this r value can be obtained by least-squares fitting of the MTS signal,from which we can infer the RAMinduced frequency shift. The full frequency uncertainty is evaluated to be 5.3 k Hz(corresponding to a relative frequency uncertainty of 9.4×10~(-12)). The corrected transition frequency has a difference from the BIPM-recommended value of 2 k Hz, which is within 1σ uncertainty, proving the validity of our evaluation.  相似文献   

3.
We report efficient generation of picosecond pulses in the near- and mid-IR in the new nonlinear material CdSiP(2) pumped at 1.064 μm by an amplified mode-locked Nd:YVO(4) laser at a 100 kHz repetition rate. By using single-pass optical parametric generation in 8-mm-long crystal cut for type I(e→oo) noncritical phase matching, an average idler power of 154 mW at 6.204 μm together with 1.16 W of signal at 1.282 μm has been obtained for 6.1 W of pump at photon conversion efficiencies of 15% and 23%, respectively. Signal pulse durations of 6.36 ps are measured for 9 ps pump pulses.  相似文献   

4.
The Ho:YAP crystal is grown by the Czochralski technique.The room temperature polarized absorption spectra of Ho:YAP crystal was measured on a c cut sample with 1 at% holmium.According to the obtained Judd-Ofelt intensity parameters Ω2 = 1.42 × 10-20 cm2,Ω4 = 2.92 × 10-20 cm2,and Ω6 = 1.71 × 10-20 cm2,this paper calculated the fluorescence lifetime to be 6 ms for 5I7 →5 I8 transition,and the integrated emission cross section to be 2.24×10-18 cm2.It investigates the room temperature Ho:YAP laser end pumped by a 1.91 μm Tm:YLF laser.The maximum output power was 4.1 W when the incident 1.91 μm pump power was 14.4 W.The slope efficiency is 40.8%,corresponding to an optical to optical conversion efficiency of 28.4%.The Ho:YAP output wavelength was centred at 2118 nm with full width at half maximum of about 0.8 nm.  相似文献   

5.
胡永红  徐庆  刘中柱 《中国物理 B》2009,18(4):1367-1372
The chirality-asymmetry macroscopic force mediated by light pseudoscalar particles between α -quartz and some achiral matter is studied. If this force between achiral source mass and α -quartz with some chirality is attractive, it will become repulsive when the chirality of the α -quartz crystal is changed. According to the tested limits of the coupling constant gs gp /\hbar c< 1.5× 10-24 at the Compton wavelength λ = 10-3 m, the force (F) between a 0.08× 0.08× 0.002 m3 block of α -quartz and a 0.08× 0.08× 0.01 m3 copper block with a separation being 0.5× 10-3 \mbox{m} in between, is estimated from the published data at less than 4.64× 10-24 N, i.e. F < 4.64× 10-24 N.  相似文献   

6.
In an experiment performed in the CERN SPS hyperon beam we have obtained a value for the branching ratio $${{\Sigma ^ + \to p\gamma } \mathord{\left/ {\vphantom {{\Sigma ^ + \to p\gamma } {\Sigma ^ + \to p\pi }}} \right. \kern-\nulldelimiterspace} {\Sigma ^ + \to p\pi }}^0 of\left( {2.46_{ - 0.35}^{ + 0.30} } \right) \times 10^{ - 3} ,$$ corresponding to a branching ratio $${{\Sigma ^ + \to p\gamma } \mathord{\left/ {\vphantom {{\Sigma ^ + \to p\gamma } {\Sigma ^ + \to all}}} \right. \kern-\nulldelimiterspace} {\Sigma ^ + \to all}}of\left( {1.27_{ - 0.18}^{ + 0.16} } \right) \times 10^{ - 3} .$$ This result is discussed in the context of present understanding of hyperon radiative decays.  相似文献   

7.
The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement.  相似文献   

8.
李成仁 《物理学报》2008,57(1):224-227
The green and red up-conversion emissions centred at about 534, 549 and 663\,nm of wavelength, corresponding respectively to the ${^{2}}H_{11 / 2} \to {^{4}}I_{15 / 2}$, ${^{4}}S_{3 / 2} \to {^{4}}I_{15 / 2}$ and ${^{4}}F_{9 / 2} \to {^{4}}I_{15 / 2}$ transitions of Er$^{3 + }$ ions, have been observed for the Er$^{3 + }$-doped silicate glass excited by a 978\,nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296--673\,K, which shows that Er$^{3 + }$-doped silicate glass can be used as a sensor in high-temperature measurement.  相似文献   

9.
Juan Qin 《中国物理 B》2022,31(11):117102-117102
Time-of-flight (ToF) transient current method is an important technique to study the transport characteristics of semiconductors. Here, both the direct current (DC) and pulsed bias ToF transient current method are employed to investigate the transport properties and electric field distribution inside the MAPbI$_{3}$ single crystal detector. Owing to the almost homogeneous electric field built inside the detector during pulsed bias ToF measurement, the free hole mobility can be directly calculated to be about 22 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, and the hole lifetime is around 6.5 μs-17.5 μs. Hence, the mobility-lifetime product can be derived to be $1.4\times 10^{-4}$ cm$^{2}\cdot$V$^{-1}$-$3.9\times 10^{-4}$ cm$^{2}\cdot$V$^{-1}$. The transit time measured under the DC bias deviates with increasing voltage compared with that under the pulsed bias, which arises mainly from the inhomogeneous electric field distribution inside the perovskite. The positive space charge density can then be deduced to increase from 3.1$\times10^{10}$ cm$^{-3}$ to 6.89$\times 10^{10}$ cm$^{-3}$ in a bias range of 50 V-150 V. The ToF measurement can provide us with a facile way to accurately measure the transport properties of the perovskite single crystals, and is also helpful in obtaining a rough picture of the internal electric field distribution.  相似文献   

10.
陈德应  张盛  夏元钦 《中国物理 B》2009,18(7):3073-3078
Using a neutral N2 beam as target,this paper studies the dissociation of N2+ in intense femtosecond laser fields(45 fs,~1×10 16 W/cm 2) at the laser wavelength of 800 nm based on the time-of-flight mass spectra of N + fragment ions.The angular distributions of N+ and the laser power dependence of N + yielded from different dissociation pathways show that the dissociation mechanisms mainly proceed through the couplings between the metastable states(A,B and C) and the upper excited states of N2+.A coupling model of light-dressed potential energy curves of N+2 is used to interpret the kinetic energy release of N+.  相似文献   

11.
We study the prospects to measure the CP-sensitive triple-product asymmetries in neutralino production \(e^{+} e^{-} \to\tilde{\chi}^{0}_{i}\tilde{\chi}^{0}_{1}\) and subsequent leptonic two-body decays \(\tilde{\chi}^{0}_{i} \to \tilde{\ell}_{R} \ell\), \(\tilde{\ell}_{R} \to \tilde{\chi}^{0}_{1} \ell\), for ?=e,μ, within the Minimal Supersymmetric Standard Model. We include a full detector simulation of the International Large Detector for the International Linear Collider. The simulation was performed at a center-of-mass energy of \(\sqrt{s}=500\) GeV, including the relevant Standard Model background processes, a realistic beam energy spectrum, beam backgrounds and a beam polarization of 80% and ?60% for the electron and positron beams, respectively. In order to effectively disentangle different signal samples and reduce SM and SUSY backgrounds we apply a method of kinematic reconstruction. Assuming an integrated luminosity of 500 fb?1 collected by the experiment and the performance of the current ILD detector, we arrive at a relative measurement accuracy of 10% for the CP-sensitive asymmetry in our scenario. We demonstrate that our method of signal selection using kinematic reconstruction can be applied to a broad class of scenarios and it allows disentangling processes with similar kinematic properties.  相似文献   

12.
Tushagu Abudouwufu 《中国物理 B》2022,31(4):40704-040704
Copper ion conducting solid electrolyte Rb$_{4}$Cu$_{16}$I$_{6.5}$Cl$_{13.5 }$ was prepared by means of mechano-chemical method. The structure and morphology of the powder was investigated by x-ray diffraction and scanning electron microscopy. The grain size was estimated to be 0.2-0.9 μm and the ionic conductivity at room temperature was approximately 0.206 S/cm. The solid electrolyte Rb$_{4}$Cu$_{16}$I$_{6.5}$Cl$_{13.5 }$ was exploited for copper ion beam generation. The copper ion emission current of several nA was successfully obtained at acceleration voltages of 15 kV and temperature of 197 $^\circ$C in vacuum of 2.1$\times10^{-4}$ Pa. A good linear correlation between the logarithmic ion current $(\log I)$ and the square root of the acceleration voltage ($U_{\rm acc}$) at high voltage range was obtained, suggesting the Schottky emission mechanism in the process of copper ion beam generation.  相似文献   

13.
肖雪  李海洋  牛冬梅  罗晓琳 《中国物理》2007,16(12):3655-3661
The photoionization of seeded carbon bisulfide molecular beam by a 1064\,nm nanosecond Nd-YAG laser with intensities varying from $0.8\times10^{11}$ to $5.6\times10^{11}$\,W/cm$^{2}$ have been studied by time-of-flight mass spectrometry. Multiply charged ions of S$^{q + }$ ($q$ = 2--6) and C$^{q +}$ ($q$ = 2--4) with kinetic energy of hundreds of electron volts have been observed, and there are strong experimental evidences indicating that those multicharged ions originate from the ionization of CS$_{2}$ neat clusters in the beam. An electron recolliding ionization model is proposed to explain the appearance of those multiply charged atomic ions under such low laser intensities.  相似文献   

14.
Diffusion of W in the 723–1153 K temperature range both in paramagnetic and ferromagnetic α-Fe was studied, diffusion couples were manufactured by W evaporation onto high-purity Fe samples. Measurements were made using the Heavy Ion Rutherford Backscattering (HIRBS) technique as the analysis tool. A straight Arrhenius plot was obtained in the paramagnetic region with a break at the Curie temperature (1043 K) followed by a curved plot at lower temperatures as a product of the effect of ferromagnetism on diffusion. A straight Arrhenius plot was obtained in the paramagnetic region with a break at the Curie temperature (1043 K) followed by a curved plot at lower temperatures resulting from the effect of ferromagnetism on diffusion. A previous developed model for the diffusion of non-magnetic impurities in ferromagnetic Fe fits the data perfectly well, giving a temperature dependent diffusivity according to
$\everymath{\displaystyle}{rcl}D(T) &=& 2.3 \times 10^{- 6}\\[5pt]&&{}\times \exp \biggl[ - \frac{( 215~\mathrm{kJ}\,\mathrm{mol}^{-1} )\!\times\! ( 1 + 0.176s^{2} )}{RT} \biggr]~\mathrm{m}^{2}\,\mathrm{s}^{-1}$\everymath{\displaystyle}\begin{array}{rcl}D(T) &=& 2.3 \times 10^{- 6}\\[5pt]&&{}\times \exp \biggl[ - \frac{( 215~\mathrm{kJ}\,\mathrm{mol}^{-1} )\!\times\! ( 1 + 0.176s^{2} )}{RT} \biggr]~\mathrm{m}^{2}\,\mathrm{s}^{-1}\end{array}  相似文献   

15.
The Lamb dip of CO rovibrational transition is detected by a room temperature extracavity RF optogalvanic cell and employed to stabilize the frequency of a CO laser. The S/N ratio of optogalvanic signal is about 2000  at optical power < 1 W. The relative depth of Lamb dip is 2.3%. The S/N ratios of first and third harmonic demodulated saturation signals are about 40  and 10  , respectively. The CO laser is stabilized using the first harmonic demodulated signal, and the frequency stability is better than 300 kHz. Concurrently, the influences of operational parameters, which include the coil current, partial pressures of gas mixture, are investigated. A simple model for the influence of coil current is presented, and further improvements are addressed as well.  相似文献   

16.
Radio frequency spectra of CsF in the rotational stateJ=1 have been measured for the vibrational statesv=0, 1,..., 8 using the molecular beam electric resonance method. The analysis of the spectra yields the electric dipole moment μv and the quadrupole coupling constanteq v Q connected with the quadrupole moment of the Cs nucleus. The results are: $$\begin{gathered} \mu _\upsilon = 7.8478 + 0.07026(\upsilon + 1/2) + 0.000195(\upsilon + 1/2)^2 debye \hfill \\ eq_\upsilon Q/h = 1245.2 - 16.2(\upsilon + 1/2) + 0.31(\upsilon + 1/2)^2 kHz. \hfill \\ \end{gathered} $$   相似文献   

17.
《中国物理 B》2021,30(5):58101-058101
The interface state of hydrogen-terminated(C–H) diamond metal–oxide–semiconductor field-effect transistor(MOSFET) is critical for device performance. In this paper, we investigate the fixed charges and interface trap states in C–H diamond MOSFETs by using different gate dielectric processes. The devices use Al_2O_3 as gate dielectrics that are deposited via atomic layer deposition(ALD) at 80℃ and 300℃, respectively, and their C–V and I–V characteristics are comparatively investigated. Mott–Schottky plots(1/C~2–VG) suggest that positive and negative fixed charges with low density of about 1011 cm~(-2) are located in the 80-℃-and 300-℃ deposition Al_2O_3 films, respectively. The analyses of direct current(DC)/pulsed I–V and frequency-dependent conductance show that the shallow interface traps(0.46 e V–0.52 e V and0.53 e V–0.56 e V above the valence band of diamond for the 80-℃ and 300-℃ deposition conditions, respectively) with distinct density(7.8 × 10~(13) e V~(-1)·cm~(-2)–8.5 × 10~(13) e V-1·cm~(-2) and 2.2 × 1013 e V~(-1)·cm~(-2)–5.1 × 10~(13) e V~(-1)·cm~(-2) for the80-℃-and 300-℃-deposition conditions, respectively) are present at the Al_2O_3/C–H diamond interface. Dynamic pulsed I–V and capacitance dispersion results indicate that the ALD Al_2O_3 technique with 300-℃ deposition temperature has higher stability for C–H diamond MOSFETs.  相似文献   

18.
We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is $\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), while for nd spin rotation we obtain $\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), where the g (X-Y), in units of $MeV^{ - \frac{3} {2}}$MeV^{ - \frac{3} {2}}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be $\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m}$\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.  相似文献   

19.
This paper investigates the infrared absorption spectra of oxygen-related complexes in silicon crystals irradiated with electron (1.5~MeV) at 360~K. Two groups of samples with low [Oi]=6.9× 1017~cm-3 and high [ Oi]=1.06× 1018~cm-3 were used. We found that the concentration of the VO pairs have different behaviour to the annealing temperature in different concentration of oxygen specimen, it is hardly changed in the higher concentration of oxygen specimen. It was also found that the concentration of VO2 in lower concentration of oxygen specimen gets to maximum at 450~℃ and then dissapears at 500~℃, accompanied with the appearing of VO3. For both kinds of specimens, the concentration of VO3 reachs to maximum at 550~℃ and does not disappear completely at 600~℃.  相似文献   

20.
An electric molecular beam resonance spectrometer has been used to measure simultaneously the Zeeman- and Stark-effect splitting of the hyperfine structure of133Cs19F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. Electrically induced (Δ m J =±1)-transitions have been measured in theJ=1 rotational state, υ=0, 1 vibrational state. The obtained quantities are: The electric dipolmomentμ el of the molecule for υ=0, 1; the rotational magnetic dipolmomentμ J for υ=0, 1; the anisotropy of the magnetic shielding (σ -σ‖) by the electrons of both nuclei as well as the anisotropy of the molecular susceptibility (ξ -ξ‖), the spin rotational interaction constantsc Cs andc F, the scalar and the tensor part of the nuclear dipol-dipol interaction, the quadrupol interactioneqQ for υ=0, 1. The numerical values are:
$$\begin{gathered} \mu _{el} \left( {\upsilon = 0} \right) = 73878\left( 3 \right)deb \hfill \\ \mu _{el} \left( {\upsilon = 1} \right) - \mu _{el} \left( {\upsilon = 0} \right) = 0.07229\left( {12} \right)deb \hfill \\ \mu _J /J\left( {\upsilon = 0} \right) = - 34.966\left( {13} \right) \cdot 10^{ - 6} \mu _B \hfill \\ \mu _J /J\left( {\upsilon = 1} \right) = - 34.823\left( {26} \right) \cdot 10^{ - 6} \mu _B \hfill \\ \left( {\sigma _ \bot - \sigma _\parallel } \right)_{Cs} = - 1.71\left( {21} \right) \cdot 10^{ - 4} \hfill \\ \left( {\sigma _ \bot - \sigma _\parallel } \right)_F = - 5.016\left( {15} \right) \cdot 10^{ - 4} \hfill \\ \left( {\xi _ \bot - \xi _\parallel } \right) = 14.7\left( {60} \right) \cdot 10^{ - 30} erg/Gau\beta ^2 \hfill \\ c_{cs} /h = 0.638\left( {20} \right)kHz \hfill \\ c_F /h = 14.94\left( 6 \right)kHz \hfill \\ d_T /h = 0.94\left( 4 \right)kHz \hfill \\ \left| {d_s /h} \right|< 5kHz \hfill \\ eqQ/h\left( {\upsilon = 0} \right) = 1238.3\left( 6 \right) kHz \hfill \\ eqQ/h\left( {\upsilon = 1} \right) = 1224\left( 5 \right) kHz \hfill \\ \end{gathered} $$  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号