首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The importance of having high local cathode spot pressures for the self-sustaining operation of a thermal arc plasma on a cold cathode is theoretically investigated. Applying a cathode sheath model to a Cu cathode, it is shown that cathode spot plasma pressures ranging 7.4-9.2 atm and 34.2-50 atm for electron temperatures of ~1 eV are needed to account for current densities of 109 and 1010 A·m-2, respectively. The study of the different contributions from the ions, the emission electrons, and the back-diffusing plasma electrons to the total current and heat transfer to the cathode spot has allowed us to show the following. 1) Due to the high metallic plasma densities, a strong heating of the cathode occurs and an important surface electric field is established at the cathode surface causing strong thermo-field emission of electrons. 2) Due to the presence of a high density of ions in the cathode vicinity, an important fraction of the total current is carried by the ions and the electron emission is enhanced. 3) The total current is only slightly reduced by the presence of back-diffusing plasma electrons in the cathode sheath. For a current density jtot=109 A·m-2 , the current to the cathode surface is mainly transported by the ions (76-91% of jtot while for a current density jtot = 1010 A·m-2, the thermo-field electrons become the main current carriers (61-72% of jtot). It is shown that the cathode spot plasma parameters are those of a high pressure metallic gas where deviations from the ideal gas law and important lowering of the ionization potentials are observed  相似文献   

2.
The cathode spot formation in air within the first 170 ns was investigated by laser absorption photography and ps-pulse interferometry. The discharge was initiated between electrodes made from Ag or Pd with cathode-anode distance below 300 μm, the arc duration was some milliseconds, and the arc current 5-10 A. Picosecond holographic interferometry and momentary absorption photography yielded spatial-temporal density distributions in the ignition phase of the cathode spot. An absolute electron density value on the order of 4×1026 m-3 has been found. In contrast to vacuum, the cathode spot plasmas broaden little with increasing distance from the cathode, thus narrow plasma channels are observed in the vicinity of the cathode surface having diameters <20 μm  相似文献   

3.
Cathode spot formation in laser-induced breakdown in vacuum was investigated by laser absorption photography with high spatial (0.5 μm) and temporal (100 ps) resolution. The discharge was initiated between Cu electrodes with a cathode-anode distance of 15-250 μm. The duration of pulsed discharges was 750 ns and dc discharges some milliseconds; the current was below 10 A. Picosecond momentary absorption photography yielded spatial-temporal density distributions in the ignition phase of the cathode spot. An absolute electron density >5×1026 m-3 in narrow plasma fragments with a diameter smaller than 5 μm was estimated. Mathematical modeling has satisfactorily explained the formation of the narrow plasma channel due to the bulk current self-focusing, as well as due to the generation of nonstationary emissive centers at the moving boundary of the expanding cathode spot plasma  相似文献   

4.
Minimum conditions for the formation of surface craters by laser irradiation were studied experimentally and theoretically for various metals. The critical power density for crater formation within 20 ns was about 1011 W/m2. It is therefore concluded that crater formation by ion bombardment requires an ion current density on the order of 1010 A/m2  相似文献   

5.
An intense pulsed electron beam produced by a pseudospark discharge is used for material processing. The electron beam propagates in a self-focused manner in the background gas. Hardly 12 ns after the beginning of the discharge the fraction of space charge neutralization is about 96%. To sustain the neutralization effect high energy electrons (E <500 keV) are accelerated in radial direction at the beam head, due to strong electric field gradients. At current maximum the beam pinches due to its own magnetic field. At peak current of 400 A and charging voltage up to 16 kV power density reaches 109 W/cm 2 on the target surface. Some results of copper thin films are presented. Due to the high expansion velocity of 104 m/s of the ablated target material a copper-matrix has been masked  相似文献   

6.
Self-sustained self-sputtering occurring during high current pseudospark operation (≈104 A/cm2, I>103 A) is shown to be a possible mechanism for the superdense glow. The mean-free-path for ionization of cathode material sputtered in the low-current hollow-cathode phase can be shorter than the cathode-anode gap distance, and ionized atoms can return to the cathode surface, self-sputtering with a yield greater than one. The self-sputtered cathode atoms become ionized in the beam of electrons accelerated in the cathode sheath. A large fraction of the discharge current at the cathode surface can be carried uniformly over the surface by ions and a very high electron emission density is not required to maintain the high current  相似文献   

7.
The longevity of high gain GaAs photoconductive semiconductor switches (PCSSs) has been extended to well over ten million pulses by reducing the density of carriers at the semiconductor to metal interface. This was achieved by reducing the density in the vertical and lateral directions. The latter was achieved by varying the spatial distribution of the trigger light thereby widening the current filaments that are characteristic of the high gain switches. We reduced the carrier density in the vertical direction by using ion implantation. These results were obtained for currents of about 10 A, current duration of 3.5 ns, and switched voltage of ~2 kV. At currents of ~70 A, the switches last for 0.6 million pulses. In order to improve the performance at high currents, new processes such as deep diffusion and epitaxial growth of contacts are being pursued. To guide this effort we recorded open shutter, infra-red images, and time-resolved Schlieren images of the current filaments, which form during high gain switching. We measured, under varying conditions, a carrier (electrons or holes) density that ranges from 3×1017 cm-3 to 6×1018 cm-3  相似文献   

8.
Various mechanisms of electron emission, including the field, field-enhanced thermionic, and explosive electron emissions from pseudospark cathodes, are discussed and compared. The mechanism of the field-induced explosive electron emission due to microstructure on the cathode surface is considered to be more likely the pseudospark superemissive mechanism. A high-mean electric field up to 3-5 MV/cm on the cathode surface in the end of hollow cathode phase is enough to initiate the mechanism. The cathode spot initiation delay time (<10 ns) and explosive emission threshold current (~108 A/cm2 ) prior to the high current conducting phase are given by solving the initial value problem of the one-dimensional heat conduction equation, thus explaining the existing experimental data of the pseudospark cathode superemission. In the case of multigap discharge, the above mechanism occurs on nearly all cathode and interelectrode surfaces. Experimental evidence in single- and multigap pseudospark discharges supports the suggested explanation  相似文献   

9.
A counter-streaming flow system is a test-bed to investigate the astrophysical collisionless shock(CS) formation in the laboratory. Electrostatic/electromagnetic instabilities, competitively growing in the system and exciting the CS formation, are sensitive to the flows parameters. One of the most important parameters is the velocity, determining what kind of instability contributes to the shock formation. Here we successfully measure the evolution of the counter-streaming flows within one shot using a multi-pulses imaging diagnostic technique. With the technique, the average velocity of the high-density-part(ne ≥ 8–9 × 10~(19)cm~(-3)) of the flow is directly measured to be of ~ 10~6cm/s between 7 ns and 17 ns.Meanwhile, the average velocity of the low-density-part(ne ≤ 2 × 10~(19)cm~(-3)) can be estimated as ~ 10~7cm/s. The experimental results show that a collisionless shock is formed during the low-density-part of the flow interacting with each other.  相似文献   

10.
何寿杰  哈静  刘志强  欧阳吉庭  何锋 《物理学报》2013,62(11):115203-115203
利用流体-亚稳态原子传输混合模型研究了氩气矩形空心阴极放电稳态时的参数. 数值计算得到了压强为10 Torr时的电势、电子、离子和亚稳态氩原子密度以及电子平均能量的分布. 结果表明电子和离子密度峰值为4.7×1012 cm-3, 亚稳态原子密度峰值为2.1×1013 cm-3. 本文同时对流体-亚稳态原子传输混合模型和单一流体模型模拟得到的放电参数进行了比较. 结果表明, 分步电离是新电子产生的重要来源, 亚稳态原子对空心阴极放电特性有重要影响. 与单一流体模型相比, 混合模型计算得到的电子密度升高, 阴极鞘层宽度和电子平均能量降低. 关键词: 空心阴极放电 流体-亚稳态原子传输模型 电子密度 分步电离  相似文献   

11.
A series of experiments carried out in a gas embedded compressional Z-pinch are presented. A dc micro discharge of 150 μA between two conical sharp edged electrodes is established to produce a hollow cylindrical discharge. A few nanoseconds before the application of the main voltage, a pulsed laser is focused through the anode onto the cathode. With this preionization scheme an initial coaxial current structure is established. H2 and D2 at a pressure of 1/3 atm were used as a working gas. The experiments have been carried out using a pulse power generator capable of delivering current of up to I~200 kA with a dI/dt>1012 A/s. The use of H2 and D2 allows the study of discharges with the same electrical properties, but with different dynamics. At early times this preionization scheme produces a coaxial double column pinch, which as current rises, coalesces into a single column becoming a gas embedded compressional Z-pinch. Diagnostics used are current and voltage monitors, single frame holographic interferometry and shadowgraphy, visible streak camera, and single frame image converter camera. Electron density, line density, pinch radius, and plasma motion are obtained from the optical diagnostics. It was found that the maximum electron density achieved on axis is greater than twice the expected value according with the filling pressure used in the discharges, which contrasts with a traditional gas embedded pinch in which the density is lower than the expected value from filling pressure. The expansion rate of the plasma column is reduced to a third of the observed value for the single channel laser initiated gas embedded pinch. These measurements agree with the existence of a central current channel in this new configuration of gas embedded pinch. The experimental results clearly show that compression is achieved with the composite preionization scheme  相似文献   

12.
Operation of explosive-emission cold cathodes made from various materials was studied at a large number of pulses at current densities of ~1.04 A/cm2. The cathode voltage and the beam current were ~500 kV and 5 kA, respectively, with a pulsewidth of ~20 ns. At a small number of pulses (⩽103), cathodes of like geometry (even made from different materials) demonstrated similar emission properties. For most of the materials tested, with a large number of pulses (⩾103), the current risetime increased to the fullwidth of the voltage pulse and the maximum current of the vacuum diode decreased. When using a graphite cathode, the maximum current remained invariant until 108 pulses. Mass losses were measured for a series of cathode materials. The results obtained offered the possibility to realize long-lived operation of an X-band relativistic backward-wave oscillator with an almost invariant output power of 350-400 MW during 108 pulses at a pulse repetition rate of 100-150 p.p.s  相似文献   

13.
The plasma properties of a medium-vacuum nitrogen arc discharge from a titanium cathode were studied. The arc chamber use was 400 mm in diameter and 600 mm in length. The cathode diameter and thickness were 64 and 25 mm, respectively. The experimental conditions are given as follows: pressure range=1×10-3~2×10-1 torr; N2 gas flow rate=6 ml/min; arc current=50 A. Electric probe characteristics are measured as a function of pressure and distance from the cathode surface. The analytical results obtained show that the electron energy distribution takes 1-Mx at pressures above 1×10-2 torr but 2-Mx at pressures under 4×10-2 torr and that the electron density has a maximum value at a certain pressure. The Ti+, Ti++, and N +2 ion spectral intensities are measured as a function of pressure and distance from the cathode surface. On comparison of these results and the electron density, the Ti+ spectral intensity turns out to be proportional to that of the electron density. This suggests that the major ion in the plasma volume is of the Ti+ species  相似文献   

14.
Intense pulse metallic ion beams (Al+, Cu+, and Pb+) were produced by a magnetically insulated ion diode having a metal anode. Metal ion plasmas on the anode could be generated through enhanced electron bombardment by using a radial cathode. The energy, current density, and duration time of the lead ion beam were 30~140 keV, ~7.5 A/cm2 (total ion current ⩾0.5 kA), and 800 ns, respectively. The ion current density exceeded the space-charge-limited current by a factor of 50. The lead ions in the first-to-sixth states of ionization were detected by a Thomson-parabola ion-spectrometer together with light loss, such as C+ and O +. The ratio of the ion current of heavy metals to the total ion current was measured using a magnetic mass analyzer with a charge collector. The ratio was about 90% for a lead ion beam and 20~50% for Al and Cu ion beams  相似文献   

15.
A new method is presented to determine Si/SiO2 interface recombination parameters. The device employed is constituted by a polysilicon-oxide-semiconductor capacitor with a microscale central junction (a gate-controlled point-junction diode). The excess minority carriers are photo-generated rather than being injected, which results in a one-dimensional current flow normal to the Si/SiO2interface. The minority carrier quasi-Fermi level is probed at the Si/SiO2 interface by means of the point junction. The one-dimensionality of the current flow and the exact knowledge of the minority carrier quasi-Fermi level permit an accurate measurement of the recombination rate. The method has been applied to characterize p-type 100 Si/SiO2 interfaces with boron dopant concentrations ranging from 2.2×1015 to 2.0×1017 cm-3. Data analysis has been performed using a numerical scheme to find a quasi-exact solution for the current recombining at the interface. It was found that the interface recombination parameters (trap density and capture cross-sections) depend only weakly on trap energy in a wide range around midgap. The cross-section for capturing electrons (σn) was found to greatly exceed (by a factor of 102 to 103) the cross-section for capturing holes (σp).  相似文献   

16.
The densities of iron, tungsten, copper, and nickel vapors produced by pseudosparks in a switch-like configuration are measured by laser-induced fluorescence. The cathode is made of a composite material essentially consisting of tungsten, but also containing the other metals mentioned. Total vapor densities are calculated from ground state densities using the excitation temperature of iron, which decays from 1900 K at 9 μs after initiation of the discharge to 600 K about 150 μs later. With maximum copper and tungsten vapor densities of 1.5×1018 m-3 and 2×1017 m -3, respectively, the composition of metal vapor differs considerably from that of the cathode material. Iron and nickel vapors are present with densities in the range of 1016 m-3. By comparison of vapor density ratios with vapor pressure ratios it is found that regions with temperatures in excess of 5000 K exist on the cathode. These are attributable to emission sites providing the electrons for current conduction. The vapor densities are roughly proportional to the current amplitude, while the gas pressure has practically no influence between 15 and 30 Pa  相似文献   

17.
杨鹏  吕燕伍  王鑫波 《物理学报》2015,64(19):197303-197303
本文研究AlN作为AlxGa1-xN/GaN插入层引起的电子输运性质的变化, 考虑了AlxGa1-xN和AlN势垒层的自发极化、压电极化对AlxGa1-xN/AlN/GaN双异质结高电子迁移率晶体管(HEMT)中极化电荷面密度、二维电子气(2DEG) 浓度的影响, 分析了AlN厚度与界面粗糙度散射和合金无序散射的关系; 结果表明, 2DEG 浓度、界面粗糙度散射和合金无序散射依赖于AlN层厚度, 插入一层1–3 nm薄的AlN层, 可以明显提高电子迁移率.  相似文献   

18.
A recently developed B-spline algorithm is extended and utilized to calculate excited states of He atoms in the presence of strong magnetic fields. Binding energies are presented for He in the five excited atomic states 210+, 110-, 210-, 11(-1)+, and 21(-1)+ with magnetic field strength ranging from 0.0001 to 10 a.u. The obtained energies are compared with available theoretical data, and found to be in good agreement. We investigate influence of magnetic fields on atomic structures of multielectron atoms, and illustrate that how electron probability density distributions change with increasing magnetic field strength. The current approach is directly applicable to simulations of discrete spectra for He atoms in the atmospheres of magnetized white dwarf stars.  相似文献   

19.
Temperature, energy, and densities of two electron distribution function components, including an isotropic bulk part and an anisotropic beam, are analyzed for a hydrogen pseudospark and/or back-lighted thyratron switch plasma with a peak electron density of 1-3×1015 cm-3 and peak current density of ≈104 A/cm2. Estimates of a very small cathode-fall width during the conduction phase and high electric field strengths lead to the injection of an electron beam with energies ⩾100 eV and density of 1013-1014 cm-3 into a Maxwellian bulk plasma. Collisional and radiative processes of monoenergetic beam electrons, bulk plasma electrons and ions, and atomic hydrogen are modeled by a set of rate equations, and line intensity ratios are compared with measurements. Under these high-current conditions, for an initial density nH2=1016 cm-3 and electron temperature of 0.8-1 eV, the estimated beam density is ≈1013 -1014 cm-3. These results suggest the possibility of producing in a simple way a very high-density electron beam  相似文献   

20.
The composition of the vacuum arc plasma for five elements (Cd, Mg, Al, Ni, and Mo) is calculated by the Saha equation, which assumes local thermodynamic equilibrium conditions within the ionization region of the cathode spot(s). The lowering of the ionization potential due to the high density of charged particles is considered. By matching the computed and the measured plasma ionic composition, the electron density and the temperature are estimated. The experimental plasma compositions can be approximated only at a high electron density (1019-10 21 cm-3) and at electron temperatures in the range of a few electronvolts  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号