首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of singly ionized and neutral tungsten atoms were measured by laser-induced fluorescence after the forced extinction of vacuum arcs between tungsten-copper butt contacts, 28-mm in diam. and 10-mm apart. The 50-Hz current was forced to zero at its maximum of 200 A in 1.3 μs by application of a reverse voltage. Near current zero, the ion concentration of 4×1017 m-3 is of the same order of magnitude as the atomic tungsten concentration, which is 6×1017 m-3. While the concentration of the neutrals remains virtually constant during 20 μs after current zero, the ion concentration decays by three orders of magnitude in the same time. The decay-time constant varies from 1.9 μs close to the postarc cathode to 3.6 μs near the postarc anode. It is concluded that the dielectric recovery of vacuum gaps after diffuse arcs is mainly controlled by residual charge carriers  相似文献   

2.
The importance of having high local cathode spot pressures for the self-sustaining operation of a thermal arc plasma on a cold cathode is theoretically investigated. Applying a cathode sheath model to a Cu cathode, it is shown that cathode spot plasma pressures ranging 7.4-9.2 atm and 34.2-50 atm for electron temperatures of ~1 eV are needed to account for current densities of 109 and 1010 A·m-2, respectively. The study of the different contributions from the ions, the emission electrons, and the back-diffusing plasma electrons to the total current and heat transfer to the cathode spot has allowed us to show the following. 1) Due to the high metallic plasma densities, a strong heating of the cathode occurs and an important surface electric field is established at the cathode surface causing strong thermo-field emission of electrons. 2) Due to the presence of a high density of ions in the cathode vicinity, an important fraction of the total current is carried by the ions and the electron emission is enhanced. 3) The total current is only slightly reduced by the presence of back-diffusing plasma electrons in the cathode sheath. For a current density jtot=109 A·m-2 , the current to the cathode surface is mainly transported by the ions (76-91% of jtot while for a current density jtot = 1010 A·m-2, the thermo-field electrons become the main current carriers (61-72% of jtot). It is shown that the cathode spot plasma parameters are those of a high pressure metallic gas where deviations from the ideal gas law and important lowering of the ionization potentials are observed  相似文献   

3.
This paper discusses the excitation, ionization and reaction mechanism of reactive cathodic arc deposition of TiN. Such arc plasmas art operated in the arc discharge type PVD apparatus. The 50 A arc is operated in N2 atmosphere of 0.13 to 26.6 Pa. The arc voltage, the electron energy distribution and the spectral intensities are measured as a function of pressure. The deposited films are analyzed by XPS. It follows from the result that (1) the N2 molecules impact with the high energy electron to be excited or ionized; (2) Ti ++ ions which are initially emitted from the cathode spot recombine with electrons and turn Ti+ ions and Ti atoms and the recombination ratio increases with increasing pressure; (3) the TiN compound is produced on the substrate surface in the ensuing process, the excited N2 are adsorbed on the substrate surface, the N 2 are dissociated to N atoms through collisions with Ti+ ions of 40-60 eV, the N atoms react with the Ti atoms to form TiN  相似文献   

4.
The method of laser-induced fluorescence was used to study the behavior of the absolute neutral vapor density of a diffuse vacuum arc on FeCu contacts. The local and temporal resolutions were 1 mm3 and 10 μs, respectively. The arc current had a sinusoidal shape of 5.8-ms duration with peak values of 90 and 510 A. It was found that the maximum densities of the iron and copper atoms are 1.2×10 17 m-3 and 7.5×1017 m-3, respectively. During the arc the density was correlated with the current. At current zero the measured densities decreased to 10 16 m-3. After current zero, an exponential density decay with a time constant of about 100 μs was observed, indicating the recovery of dielectric strength after current zero. Measurements of the neutron iron vapor density at different spatial positions in the electrode gap reveal a nonisotropic distribution. From the measurements of the population distribution of the iron ground-state multiplet a 5D, the excitation temperature was derived. This temperature was low compared with the cathode spot temperature 2500-4000 K and decreased from 1600 K at the current maximum to 1000 K at current zero. The results indicate that the generation of neutrals is caused by flying evaporating metal droplets rather than by molten surface areas  相似文献   

5.
The main parameters and dimensions of cathode spots have been under discussion for years. To solve these current questions, a new system was specially designed. The image converting high speed framing camera (HSFC) combines a micrometer lateral resolution with a nanosecond time resolution and a very high optical sensitivity. This camera was used to study the microscopic behavior of vacuum arc cathode spots in a pulsed high current arc discharge on copper. The direct observation of these spots with high resolution revealed that one single cathode spot, as normally observed by optical means, consists of a number of simultaneously existing microscopic subspots, each with a diameter of about 10 μm and a mean distance of 30-50 μm between them. The mean existence time of these subspots on copper was found to be about 3 μs, where the position of a subspot remains unchanged (with an upper limit of about 5 μm) during its existence time. The lower limit of the current density in the cathode spots was estimated to be on the order of 1010-1011 A/m2. An upper limit of the crater surface temperature was estimated by a comparison between the brightnesses of a cathode spot and of a black body radiation lamp to about 3000 K  相似文献   

6.
何寿杰  哈静  刘志强  欧阳吉庭  何锋 《物理学报》2013,62(11):115203-115203
利用流体-亚稳态原子传输混合模型研究了氩气矩形空心阴极放电稳态时的参数. 数值计算得到了压强为10 Torr时的电势、电子、离子和亚稳态氩原子密度以及电子平均能量的分布. 结果表明电子和离子密度峰值为4.7×1012 cm-3, 亚稳态原子密度峰值为2.1×1013 cm-3. 本文同时对流体-亚稳态原子传输混合模型和单一流体模型模拟得到的放电参数进行了比较. 结果表明, 分步电离是新电子产生的重要来源, 亚稳态原子对空心阴极放电特性有重要影响. 与单一流体模型相比, 混合模型计算得到的电子密度升高, 阴极鞘层宽度和电子平均能量降低. 关键词: 空心阴极放电 流体-亚稳态原子传输模型 电子密度 分步电离  相似文献   

7.
The anodic and cathodic arc roots of constricted high current vacuum arcs were investigated with a fast framing charge-coupled device camera of 1 μs exposure time. The experiments were performed with cup-shaped contacts, with sinusoidal currents of amplitudes between 20 and 100 kA, and a sine halfwave duration of 10-12 ms. The arcs were drawn by contact separation and accelerated by the Lorentz force between the arc current and the transverse magnetic field generated by the contrate contact. The anode and cathode arc roots behave reproducibility and arc scaleable within the range of currents investigated. Both types of arc roots are elliptical, with a major to minor axis ratio of 1.4. The major axis points are in the direction of arc propagation. Anodic and cathodic arc root cross-sectional areas as a function of current can both be described by a potential law with a common exponent of 0.76. For currents of 20-100 kA, mean current densities of 81-121 and 41-60 kA/cm 2 were found in anode and cathode arc roots, respectively. Estimations of their temperature and vapor densities were performed. For the investigated current range TA≈3300-3600 K, nA ≈1.6*1019-2.2*1019cm-3 and T C≈3200-3400 K, nC≈0.8*1019-1.2*10 19 cm-3 were found for anode and cathode, respectively  相似文献   

8.
Operation of explosive-emission cold cathodes made from various materials was studied at a large number of pulses at current densities of ~1.04 A/cm2. The cathode voltage and the beam current were ~500 kV and 5 kA, respectively, with a pulsewidth of ~20 ns. At a small number of pulses (⩽103), cathodes of like geometry (even made from different materials) demonstrated similar emission properties. For most of the materials tested, with a large number of pulses (⩾103), the current risetime increased to the fullwidth of the voltage pulse and the maximum current of the vacuum diode decreased. When using a graphite cathode, the maximum current remained invariant until 108 pulses. Mass losses were measured for a series of cathode materials. The results obtained offered the possibility to realize long-lived operation of an X-band relativistic backward-wave oscillator with an almost invariant output power of 350-400 MW during 108 pulses at a pulse repetition rate of 100-150 p.p.s  相似文献   

9.
Various mechanisms of electron emission, including the field, field-enhanced thermionic, and explosive electron emissions from pseudospark cathodes, are discussed and compared. The mechanism of the field-induced explosive electron emission due to microstructure on the cathode surface is considered to be more likely the pseudospark superemissive mechanism. A high-mean electric field up to 3-5 MV/cm on the cathode surface in the end of hollow cathode phase is enough to initiate the mechanism. The cathode spot initiation delay time (<10 ns) and explosive emission threshold current (~108 A/cm2 ) prior to the high current conducting phase are given by solving the initial value problem of the one-dimensional heat conduction equation, thus explaining the existing experimental data of the pseudospark cathode superemission. In the case of multigap discharge, the above mechanism occurs on nearly all cathode and interelectrode surfaces. Experimental evidence in single- and multigap pseudospark discharges supports the suggested explanation  相似文献   

10.
A recently developed B-spline algorithm is extended and utilized to calculate excited states of He atoms in the presence of strong magnetic fields. Binding energies are presented for He in the five excited atomic states 210+, 110-, 210-, 11(-1)+, and 21(-1)+ with magnetic field strength ranging from 0.0001 to 10 a.u. The obtained energies are compared with available theoretical data, and found to be in good agreement. We investigate influence of magnetic fields on atomic structures of multielectron atoms, and illustrate that how electron probability density distributions change with increasing magnetic field strength. The current approach is directly applicable to simulations of discrete spectra for He atoms in the atmospheres of magnetized white dwarf stars.  相似文献   

11.
The densities of iron, tungsten, copper, and nickel vapors produced by pseudosparks in a switch-like configuration are measured by laser-induced fluorescence. The cathode is made of a composite material essentially consisting of tungsten, but also containing the other metals mentioned. Total vapor densities are calculated from ground state densities using the excitation temperature of iron, which decays from 1900 K at 9 μs after initiation of the discharge to 600 K about 150 μs later. With maximum copper and tungsten vapor densities of 1.5×1018 m-3 and 2×1017 m -3, respectively, the composition of metal vapor differs considerably from that of the cathode material. Iron and nickel vapors are present with densities in the range of 1016 m-3. By comparison of vapor density ratios with vapor pressure ratios it is found that regions with temperatures in excess of 5000 K exist on the cathode. These are attributable to emission sites providing the electrons for current conduction. The vapor densities are roughly proportional to the current amplitude, while the gas pressure has practically no influence between 15 and 30 Pa  相似文献   

12.
A model is formulated and evaluated for a Uniform electrical discharge sustained in vapor evaporated from an arc-heated anode. The plasma potential is positive with respect to both the cathode and anode. For a Cu anode, the anodic vapor dominates the plasma for current densities exceeding 8 kA/m2. The anode heating potential is approximately 6.5 V, and the dominant cooling mechanism is evaporation for current densities exceeding 20 kA/m2. Over the range 10 to 10000 kA/m2, the electron density increases from 8×1017 to 5×1023 m-3, while the ionization fraction rises from 0.3% to 4%. At the lower end of this current range the electrical resistivity of 4 mΩ-m is determined primarily by electron-neutral collisions, while with increasing current the resistivity decreases to 0.7 mΩ-m, with electron-ion collisions contributing an equal share. This hot-anode vacuum arc may have potential for industrial application as a macroparticle-free high-deposition-rate coating source  相似文献   

13.
The plasma properties of a medium-vacuum nitrogen arc discharge from a titanium cathode were studied. The arc chamber use was 400 mm in diameter and 600 mm in length. The cathode diameter and thickness were 64 and 25 mm, respectively. The experimental conditions are given as follows: pressure range=1×10-3~2×10-1 torr; N2 gas flow rate=6 ml/min; arc current=50 A. Electric probe characteristics are measured as a function of pressure and distance from the cathode surface. The analytical results obtained show that the electron energy distribution takes 1-Mx at pressures above 1×10-2 torr but 2-Mx at pressures under 4×10-2 torr and that the electron density has a maximum value at a certain pressure. The Ti+, Ti++, and N +2 ion spectral intensities are measured as a function of pressure and distance from the cathode surface. On comparison of these results and the electron density, the Ti+ spectral intensity turns out to be proportional to that of the electron density. This suggests that the major ion in the plasma volume is of the Ti+ species  相似文献   

14.
Production of nitrogen atoms has been studied in a 2.45-GHz flowing postdischarge in N2 and N2-H2 gas mixtures with Ar as a buffer gas in the high-pressure regime (5×103 to 6.5×104 Pa). N atom densities have been measured by NO titration in the 1014-10 15 cm3 range and monitored by the first positive emission resulting from the N atom recombination. The rate coefficient of the N+N+N2 recombination has been found to be k=6×10-33 cm6 atom-2 s -1 at T0=300 K, which agrees with previously published data. The N atom production (or degree of N/N2 dissociation) in front of an Fe-0.1%C substrate correlates well with the thickness of a γ' Fe4N layer produced by the postdischarge treatment. The H2 gas was first introduced in the initial phase of treatment to remove surface oxidizing and then was cut off to keep high densities of N atoms. It is deduced that N atoms are more active nitriding species than NH-type radicals  相似文献   

15.
The density distribution and the velocity of copper neutral atoms emitted from a single cathode spot in 40 A vacuum arc were measured by the two-dimensional (2-D) laser-induced fluorescence method. The density was calibrated from the two-dimensional fluorescence image observed by a CCD camera. The gap space was almost filled with the copper atoms, and the density reached 5×1019/m3. We varied the wavelength of the laser light and measured the velocity of the copper atoms emitted from the cathode spot using the effect of Doppler shift. The velocity of the copper atoms was about 10 km/s  相似文献   

16.
A study of the different discharge phases of the pseudospark discharge is presented. During the temporal development several modes of the pseudospark discharge are observed leading to a transient, high current, low pressure gas discharge with current densities of the order of 104A/cm2 and a forward voltage drop of about 10 2 volts. Therefore measurements of the discharge current, the total charge transported, the forward voltage drop and the influence of the gas pressure and LRC circuit, from initial phase of discharge until the transient phase to the superdense glow, are reported. Through comparison of experimental results with literature the different types of discharges are characterized. Optical studies of the radially expanding plasma column enable the temporal and spatial location of the discharge plasma. In the high current phase estimations of the temperature on the cathode surface and the solution of the Schottky-Equation show that a constriction of the ion current at microscopic surface irregularities is necessary to sustain the discharge  相似文献   

17.
温稠密物质是惯性约束核聚变、重离子聚变、Z箍缩动作过程中物质发展和存在的重要阶段. 其热力学性质和辐射输运参数在聚变实验和内爆驱动力学模拟过程中有至关重要的作用. 本文通过建立非理想Saha方程, 结合线性混合规则的理论方法模拟了温稠密钛从10-5-10 g·cm-3, 104 K到3×104 K区间的粒子组分分布和电导率随温度密度的变化, 其中粒子组分分布由非理想Saha方程求解得到. 线性混合规则模型计算温稠密钛的电导率时考虑了包括电子、原子和离子之间的多种相互作用. 钛的电导率的计算结果与已有的爆炸丝实验数据相符. 通过电导率随温度密度变化趋势判断, 钛在整个温度区间, 密度0.56 g·cm-3时发生非金属相到金属相相变. 对于简并系数和耦合系数的计算分析, 钛等离子体在整个温度和密度区间逐渐从弱耦合、非简并状态过渡到强耦合部分简并态.  相似文献   

18.
The formation of intense current filaments, destroying the homogeneity of the active laser volume, limits the energy extraction from XeCl-lasers. Using time-resolved spectrally integrated pictures, the morphology and temporal development of such filaments are studied. The time scale of this process is found to be controlled by HCl depletion. With strong preionization (ne>109/cm 3) and a fast (10 ns) rising discharge voltage applied at the end of the preionizing X-ray pulse, the filaments originate from hotspots formed in the cathode layer. The shot by shot statistics of spot formation on freshly prepared cathodes reveal that hotspots are not caused by streamers developing in the high field region of strongly reduced electron density built up by electron diffusion during formation of the cathode sheath. Unexpectedly, a large number of weak diffuse filaments are found in spotless discharges (current density 300 A/cm2; duration 200 ns), in spite of the strong preionization  相似文献   

19.
The velocity spectrum of drops emitted by a liquid-metal explosive-emission cathode has been investigated. A relation between the sizes of the drops and their maximum velocities has been found for the velocity range 103-8×104 cm/s. The relation obtained supports the earlier established mechanism for the emission of drops under the action of high pressures developing in explosive emission centers. The possibilities of an additional acceleration of drops due to the explosion of necks formed on breaking the drops off the cathode surface and at the expense of the kinetic energy of the ions of the expanding cathode plasma have been discussed  相似文献   

20.
The cathode spot formation in air within the first 170 ns was investigated by laser absorption photography and ps-pulse interferometry. The discharge was initiated between electrodes made from Ag or Pd with cathode-anode distance below 300 μm, the arc duration was some milliseconds, and the arc current 5-10 A. Picosecond holographic interferometry and momentary absorption photography yielded spatial-temporal density distributions in the ignition phase of the cathode spot. An absolute electron density value on the order of 4×1026 m-3 has been found. In contrast to vacuum, the cathode spot plasmas broaden little with increasing distance from the cathode, thus narrow plasma channels are observed in the vicinity of the cathode surface having diameters <20 μm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号