首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用共沉淀法制备了CaMoO4:Eu3,Sm3+纳米荧光粉材料.系统研究了Sm3+离子的引入对CaMoO4:Eu3+材料的结构和发光性质的影响.结果表明:纳米材料的尺寸随着Sm3+离子掺杂浓度的增加而变小.Sm3+的引入,可实现Sm3+和Eu3+之间的能量传递,使Eu3+在近紫外405 nm处的激发增强,进而使Eu3+...  相似文献   

2.
YBO3:Eu3+纳米晶发光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
用水热法制备了YBO3:Eu3+纳米材料,通过改变其反应条件对纳米颗粒的大小和形貌进行了控制,对其发射光谱进行分析并与体材料进行了比较.在纳米材料中,很大比例的稀土离子微观环境受到表面的影响.这种影响可能使稀土离子的Judd-Ofelt参数Ω2增大,从而使Eu3+5D07F2的发射加强,红色发光材料的色纯度提高.  相似文献   

3.
表面缺陷会使纳米材料的发光中心产生严重的猝灭,而适当厚度的同质包覆层会减少其猝灭。本文利用共沉淀法合成了LaF3∶Eu3+纳米颗粒和LaF3∶Eu3+/LaF3核壳结构纳米颗粒,研究了颗粒的晶体结构、形貌以及不同壳层厚度对发光性能的影响。研究发现:LaF3∶Eu3+核心和LaF3∶Eu3+/LaF3核壳结构均为六方结构。包覆同质壳层可以提高稀土离子的发光性能,包覆厚度的不同导致LaF3∶Eu3+/LaF3核壳结构的荧光强度与衰减时间均发生改变。其原因是未掺杂的LaF3壳层可以将发光中心Eu3+离子与LaF3∶Eu3+核心的表面隔离,进而减少表面对发光中心的猝灭,提高材料的发光性能。这种修饰作用与壳层厚度相关。  相似文献   

4.
二氧化锆纳米材料中Eu3+的发光特性   总被引:5,自引:3,他引:2       下载免费PDF全文
研究了掺1mol%Eu3+的二氧化锆纳米材料随退火温度变化的发光性质,得到退火温度为600和800℃的样品中Eu3+的5D0→7F2发射在604nm处,这种现象不多见. 几种经不同退火温度处理的纳米材料样品在紫外光的照射下,稀土离子Eu3+的5D0→7F2发射的发光逐渐增强, 颗粒大的样品发光强度增加得慢,颗粒小的样品发光强度增加得快.  相似文献   

5.
利用水热法制备得到NaYbF4∶0.01%Tm3+,20% Eu3+上转换材料,利用X射线衍射分析、扫描电子显微镜及光谱测试技术分别对其进行了结构、形貌以及光谱性质的表征.在980 nm近红外激光激发下,得到了Eu3+的可见到紫外范围的上转换荧光发射.分析表明:共掺杂NaYbF4纳米材料中Tm3+到Eu3+离子的能量传递对布居Eu3+离子的激发态能级,获得Eu3+的上转换发光起着至关重要的作用.另外,在实验中首次获得了Eu3+对应于3P0→7Fj(j=0,1,2)能级跃迁的上转换光发射.  相似文献   

6.
从Eu3+发射光谱获得J-O参数Ω2、Ω4   总被引:3,自引:1,他引:2  
测量了Eu3 + 掺杂的PbF2 和H3 BO3 不同配比玻璃材料的吸收光谱、发射光谱及激发光谱 ,计算了各不同配比样品的折射率。根据稀土离子Eu3 + 光学跃迁矩阵元的特点 ,从发射光谱获得了Eu3 + 光学跃迁的J O参数Ω2 和Ω4 ,并研究了Ω2 和Ω4 对xPbF2 ( 79 5-x)H3 BO3 0 5Eu2 O5玻璃体系组分的依赖关系 ,提出了用Eu3 + 离子作为玻璃材料微观环境探针 ,并通过实验证实了其可行性。  相似文献   

7.
以钛酸四丁酯为前驱物,采用溶胶-凝胶法制备了四种不同配方Eu3+掺杂的TiO2纳米晶.利用扫描电镜(SEM)、EDS能谱、光致发光光谱对样品的形貌、成份及性能进行了表征.研究了退火温度、稀土Eu3+离子掺杂摩尔分数、溶剂乙醇量等对发光性能的影响,并对其发光机理进行了探讨.结果表明:稀土Eu3+掺杂TiO2纳米晶样品,掺杂均匀、颗粒大约在30~80 nm|从EDS能谱分析可得Ti:O原子个数比并不是按化学计量TiO2满足1:2,这是因为在TiO2中形成的是Ti-O-Ti键,Eu3+离子很可能取代了Ti4+离子,同时又形成了氧空位,表明稀土Eu3+离子进入TiO2晶格中|样品的主发射峰在614 nm(5D0→7F2)处发光最强,且在593 nm(5D0→7F1)处出现了属于磁偶极跃迁的发射峰,制备Eu3+∶TiO2纳米晶的组分、退火温度、溶剂乙醇的量不同,发射光谱的强度也不同.  相似文献   

8.
纳米二氧化钛的制备及Eu~(3+)掺杂发光研究   总被引:1,自引:1,他引:0  
以钛酸四丁酯为前驱物,采用溶胶-凝胶法制备了四种不同配方Eu3+掺杂的TiO2纳米晶.利用扫描电镜(SEM)、EDS能谱、光致发光光谱对样品的形貌、成份及性能进行了表征.研究了退火温度、稀土Eu3+离子掺杂摩尔分数、溶剂乙醇量等对发光性能的影响,并对其发光机理进行了探讨.结果表明:稀土Eu3+掺杂TiO2纳米晶样品,掺杂均匀、颗粒大约在30~80nm;从EDS能谱分析可得Ti:O原子个数比并不是按化学计量TiO2满足1:2,这是因为在TiO2中形成的是Ti-O-Ti键,Eu3+离子很可能取代了Ti4+离子,同时又形成了氧空位,表明稀土Eu3+离子进入TiO2晶格中;样品的主发射峰在614nm(5D0→7F2)处发光最强,且在593nm(5D0→7F1)处出现了属于磁偶极跃迁的发射峰,制备Eu3+∶TiO2纳米晶的组分、退火温度、溶剂乙醇的量不同,发射光谱的强度也不同.  相似文献   

9.
Eu3+离子在微晶玻璃研究中的探针作用   总被引:3,自引:0,他引:3       下载免费PDF全文
制备出单掺Eu3+离子的氟氧化物玻璃陶瓷系列样品,利用Eu3+离子作为荧光探针,通过热处理前后Eu3+离子发射光谱中电偶极子跃迁与磁偶极子跃迁强度比值的变化表征在玻璃材料中微晶是否形成,分析了Eu3+离子荧光发射谱中电偶极子跃迁与晶体场对称性的关系,进一步表征了稀土离子所处微晶晶格场的变化.  相似文献   

10.
Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质   总被引:4,自引:0,他引:4       下载免费PDF全文
采用柠檬酸作燃烧剂用燃烧合成法制备了Gd2O3:Eu3+纳米晶.用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和荧光分光光度计等对Gd2O3:Eu3+纳米晶的结构、形貌和发光性能进行了分析.结果表明:不同柠檬酸与稀土离子配比(C/M)制备的样品经800℃退火1 h后,均得到了纯立方相的Gd2O3:Eu3+纳米晶,晶粒尺寸约为30 nm,尺寸分布较窄,其中以C/M=1.0时制备的纳米晶结晶性最好,发光强度最大.Gd2O3:Eu3+纳米晶主发射峰位置均在612 nm处(5D0→7F2跃迁),激发光谱中电荷迁移态发生红移,观察到Gd3+向Eu3+的有效能量传递.对柠檬酸与稀土离子配比(C/M)对结晶度、发光性质等的影响也进行了分析和讨论.  相似文献   

11.
Ca3La(BO3)3:Tb3+的合成与发光性质   总被引:2,自引:0,他引:2       下载免费PDF全文
高温固相反应法合成了Ca3La(BO3)3:Tb3+光致发光材料。利用扫描电镜和激光衍射分析仪测定了样品的晶粒形貌及粒径大小分布,利用荧光分光光度计研究了Ca3La(BO3)3:Tb3+的光致发光特性。确定了在Ca3La(BO3)3基质中Tb3+离子浓度对其发光强度的影响及其自身浓度猝灭机理;探讨了助熔剂Li2CO3、敏化剂Ce3+离子的加入对荧光粉发光强度的影响。  相似文献   

12.
采用高温固相法合成了Ba3Tb(BO3)3和Ba3Tb(BO3)3:Ce3+两种绿色荧光粉,并研究了材料的发光性质.Ba3Tb(BO3)2材料呈多峰发射,发射峰位于439,493,547,589和629 nm,分别对应Tb3+的5D3→7F4和5D4→7F1=6,5,4,3跃迁发射,主峰为547 nm;监测547 nm发射峰,所得激发光谱由4f75d1宽带吸收(200-330 nm)和4f4f电子吸收(330-400 nm)组成,主峰为380 nm.以Ce3+激活Ba3Tb(BO3)3,所得Ba3Tb(BO3)3:Ce3+与Ba3Tb(BO3),材料的发射光谱分布相同,但发射强度明显增强,说明Ce3+对Tb3+产生了很好的敏化作用;监测547 nm最强发射峰,所得激发光谱为宽带,主峰位于360 nm.改变H3BO3量,Ba3Tb(BO3)3:Ce3+材料的发射强度随之变化,当H3BO3过量15 wt%时,发射强度最大.上述研究结果表明Ba3Tb(BO3)3:Ce3+是一种很好的适于UV-LED管芯激发的白光LED用绿色荧光粉.  相似文献   

13.
Er3+/Yb3+共掺Gd3Sc2Ga3O12晶体的上转换发光   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了提拉法生长的Er3+/Yb3+:Gd3Sc2Ga3O12和Er3+:Gd3Sc2Ga3O12晶体在室温下320-1700 nm范围的吸收光谱和500-750 nm范围内的上转换荧光谱,同时对其上转换荧光的可能发生机制、途径以及上转换过程可能对Er3+的2.8 μm波段激光振荡产生的影响进行了分析和讨论.结果表明:Yb3+的敏化显著地增强了晶体在966 nm附近的吸收能力,大幅度加宽了晶体在该处的吸收带宽.在940 nm激光的激发下,Er3+/Yb3+:Gd3Sc2Ga3O12中的上转换荧光强度明显强于Er3+:Gd3Sc2Ga3O12中的上转换荧光强度,表明Yb3+与Er3+之间存在高效率的能量传递,其主要上转换机制可能为Yb3+-Er3+,Er3+-Er3+能量传递.  相似文献   

14.
Tb3+,Dy3+激活的LaBO3的发光和能量传递   总被引:8,自引:1,他引:7  
王齐祖  田军 《发光学报》1995,16(1):57-62
本文研究了在紫外光激发下Tb3+,Dy3+单激活和Tb3++Dy3+共激活的LaBO3体系的发光性能和能量传递.结果表明,Dy3+,Tb3+共存时,Tb3+的发光强度远远大于无Dy3+时的发光强度,证明Dy3+对Tb3+有敏化作用,Dy3+→Tb3+能量传递机理为多极子相互作用的共振传递.  相似文献   

15.
采用高温固相法制备了Nd,Tm和Yb掺杂的ZBLAN玻璃上转换材料.Tm3+,Yb3+的摩尔浓度分别固定为0.01%,0.3%,Nd3+摩尔浓度变化范围为0.1%~2%.在室温下,测试了样品在300~1 000nm间的吸收光谱.在798 nm近红外光激发下,测试了样品的上转换光谱.实验发现,样品在798 nm红外光激发下发出了较强的多波段(红,蓝和绿)的可见光.由上转换可见光各波段的发射谱线,给出了能级跃迁机制.蓝光主要来源于Tm3+的激发态1G4到基态3H6的跃迁,绿光来源于Nd3+的2H7/2到基态4I9/2的跃迁,红光来源于Nd3+的2H11/2到基态4i9/2的跃迁.研究发现,在Nd3+,Tm3+,Yb3+:ZBLAN玻璃样品中存在激发态吸收,能最转移和交叉弛豫等上转换过程.其发光机理是Nd3+,TM3+和Yb3+离子之间的能量转移.根据Nd3+摩尔浓度不同其上转换发光强度不同,分析了掺入稀土的浓度对上转换发光效率的影响.当Nd3+浓度为1.5%(摩尔分数)时上转换发光最强,大于1.5%后发光开始减弱.  相似文献   

16.
Na3La2(BO3)3:Sm3+的合成及其光谱特性   总被引:18,自引:0,他引:18  
本文采用固相反应法,合成了一系列掺Sm^3 的Na3La2(BO3)2[Na3(La1-xSmx)2(BO3)3]发光,X-射线粉末衍射数据分析表明它们属于正交晶系,空间群为Amm2,测量了红外光谱,荧光光谱,观察到在599nm,645nm处有较强的荧光发射,并研究了发光强度与Sm^3 离子浓度(x)的关系,确定了Sm^3 离子在Na3La2(BO3)3基质中发光的适宜浓度。  相似文献   

17.
系统研究了Pr1/3Sr2/3FeO3单相多晶样品在低温下的电荷输运性质和超声特性.电阻测量表明,Pr1/3Sr2/3FeO3在162K发生了电荷有序相变.而超声声速从室温开始就出现了明显的软化,在电荷有序温度附近达到最小值,随后又急剧硬化,同时伴随着一个巨大的衰减峰.分析指出这是由于电-声子相互作用导致的结果,该电-声子耦合可能起源于Fe4 的Jahn-Teller效应.  相似文献   

18.
采用高温固相烧结法制备了Er3+/Eu3+共掺杂和Yb3+/Er3+/Eu3+共掺杂系列硼硅酸盐玻璃样品。在978 nm半导体激光器抽运下,测量了样品的光致发光谱,分析了上转换机制。结果表明:随着Er3+浓度的增加,Eu3+的595 nm光谱强度增强;Eu3+的692 nm光谱强度随Yb3+浓度增加而增强,并明显强于595 nm光谱。Er3+/Eu3+、Yb3+/Eu3+之间的能量传递和合作上转换等机制导致Eu3+离子上转换发射。  相似文献   

19.
采用共沉淀法制备了纳米晶ZrO2-Al2O3∶Er3+发光粉体.所制备的粉体室温下具有Er3+离子特征荧光发射,主发射在绿光,其中位于547nm、560nm的绿光最强,并得出稀土离子与基质之间有能量传递.对不同煅烧温度下的样品研究表明:因不同温度下所制得的样品晶相不同.研究了纳米晶ZrO2-Al2O3∶Er3+及ZrO2-Al2O3∶Er3+/Yb3+的上转换发光,并分析了上转换的跃迁机制.发现ZrO2-Al2O3∶Er3+的绿光为双光子过程,而ZrO2-Al2O3∶Er3+、Yb3+的上转换光谱中,红光和绿光也为双光子过程,而极弱的蓝光为三光子过程.讨论了Er3+的浓度猝灭现象.最适宜掺杂浓度的原子分数为2%(Er3+/Zr4+).  相似文献   

20.
利用微乳液水热法制备出GdF3:Eu^3+纳米晶及纳米棒。用X射线粉末衍射(XRD)和透射电子显微镜(TEM)等手段对材料的结构、形态及粒径大小等进行了表征。室温下真空紫外(vuv)光谱及荧光光谱表明GdF3:Eu^3+纳米晶中的Gd^3+离子吸收一个光子,并将能量分两步传递给Eu^3+,发生了双光子发射。从各跃迁的积分强度和量子效率表达式可以得到材料在160nm紫外光激发下的量子效率约为170%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号