首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
采用高温固相法合成了LiSrPO4:Tb3+发光材料,测定了荧光粉的激发光谱和发射光谱,该荧光粉的激发主峰位于330~390nm,属于4f→4f电子跃迁吸收,与UVLED管芯相匹配。在紫外激发下的发射峰由位于490nm(5D4-7F6)、545nm(5D4-7F5)、585nm(5D4-7F4)、622nm(5D4-7F3)的四组线状峰构成,对应Tb3+的特征跃迁,其中545nm处最强,呈现绿色发光。考察了掺杂离子浓度对样品发光效率的影响,Tb3+的最佳掺杂摩尔分数为9%,分析了其自身浓度猝灭机理,探讨了敏化剂Ce3+离子的加入对荧光粉发光强度的影响。LiSrPO4:Tb3+是一种适用于白光LED的绿色荧光材料。  相似文献   

2.
Ce~(3+)、Tb~(3+)在SrZnP_2O_7材料中的发光及能量传递   总被引:2,自引:2,他引:0       下载免费PDF全文
采用高温固相法制备了Ce3+、Tb3+激活的SrZnP2O7材料,并研究了材料的发光性质。在290 nm紫外光激发下,SrZnP2O7∶Ce3+材料的发射光谱为双峰宽谱,主峰位于329 nm。SrZnP2O7∶Tb3+材料的发射光谱由420,443,491,545,587,625 nm六个峰组成,分别对应Tb3+的5D3→7F5、5D3→7F4、5D4→7F6、5D4→7F5、5D4→7F4和5D4→7F3特征发射;监测545 nm最强发射峰,所得激发光谱覆盖200~400 nm,主峰为380 nm。研究了Ce3+、Tb3+在SrZnP2O7材料中的能量传递过程,发现,Ce3+对Tb3+具有很强的敏化作用,提高了SrZnP2O7∶Tb3+材料的发射强度,当Ce3+摩尔分数为3%时,SrZnP2O7∶Tb3+材料的发射强度提高了近2倍。引入电荷补偿剂可提高SrZnP2O7∶Tb3+材料的发射强度,其中以掺入Li+和Cl-时效果最明显。  相似文献   

3.
采用固相法制备了红色LiM(M=Ca,Sr,Ba)BO3∶Re3+(Re=Eu,Sm)发光材料,研究了材料的发光性能。研究发现LiM(M=Ca,Sr,Ba)BO3∶Eu3+材料呈现多峰发射,最强发射分别位于610,615,613 nm处,分别监测这三个最强峰,所得激发光谱峰值位于369,400,470 nm。LiM(M=Ca,Sr,Ba)BO3∶Sm3+材料也呈多峰发射,分别对应Sm3+的4G5/2→6H5/2、4G5/2→6H7/2和4G5/2→6H9/2跃迁发射;分别监测602,599,597 nm三个最强发射峰,所得激发光谱峰值位于374,405 nm。研究了激活剂浓度对材料发射强度的影响,结果随激活剂浓度的增大,发射强度先增强后减弱,即,存在浓度猝灭效应。实验表明,加入电荷补偿剂Li+、Na+或K+均可提高LiM(M=Ca,Sr,Ba)BO3∶Re3+(Re=Eu,Sm)材料的发射强度。  相似文献   

4.
(Sr,Ba)Al12O19:RE3+(RE=Ce,Tb)的VUV发光及Ce3+→Tb3+的能量传递   总被引:1,自引:0,他引:1  
采用高温固相反应合成磁铅矿型(Sr,Ba)Al12O19:RE3 (RE=Ce,Tb)发光材料,X射线衍射结果证明生成单一磁铅矿型结构.Ce3 产生302 nm的发射峰和340 am左右的不太明显的肩,分别对应于5d→2F5/2和5d→2F7/2跃迁;激发光谱显示两个宽带峰,158 nm峰对应于基质吸收,260 nm峰是由4f-5d跃迁引起的.Tb3 的发射光谱显示特征的.D3→1Fi(i=2,3,4,5)和5D4→7Fi(i=4,5,6)跃迁;在激发光谱中,160 nm左右的峰是由基质吸收和Tb -O2-电荷迁移带交迭产生的,193 nm峰是Tb3 的4f-5d自旋允许跃迁引起的,233 nm弱的峰是自旋禁戒4f-5d跃迁产生的.Ce3 的发射和Tb3 的f-f跃迁吸收(~320 nm)完全交迭,并且Tb3 的发光强度随Ce3 的浓度增加而增强,从激发光谱看出,Tb3 发光部分来自于Ce3 的0吸收,具有Cd →Tb3 能量传递.  相似文献   

5.
采用高温固相反应合成磁铅矿型(Sr,Ba)Al12O19∶RE3 (RE=Ce,Tb)发光材料,X射线衍射结果证明生成单一磁铅矿型结构。Ce3 产生302nm的发射峰和340nm左右的不太明显的肩,分别对应于5d→2F5/2和5d→2F7/2跃迁;激发光谱显示两个宽带峰,158nm峰对应于基质吸收,260 nm峰是由4f-5d跃迁引起的。Tb3 的发射光谱显示特征的5D3→7Fj(j=2,3,4,5)和5D4→7Fj(j=4,5,6)跃迁;在激发光谱中,160nm左右的峰是由基质吸收和Tb3 -O2-电荷迁移带交迭产生的,193nm峰是Tb3 的4f-5d自旋允许跃迁引起的,233nm弱的峰是自旋禁戒4f-5d跃迁产生的。Ce3 的发射和Tb3 的f-f跃迁吸收(~320 nm)完全交迭,并且Tb3 的发光强度随Ce3 的浓度增加而增强,从激发光谱看出,Tb3 发光部分来自于Ce3 的吸收,具有Ce3 →Tb3 能量传递。  相似文献   

6.
采用高温固相法合成了绿色荧光粉CaBa2(BO3)2:Tb3+并对其发光特性进行了研究.发射峰值位于496,549,588,622 nm,分别对应Tb3+的5D4→7F6、2D4→7F5、5D4→7F4、5D4→7F3能级跃迁.其中以496 nm和549 nm的发射峰最强,样品呈现很好的绿色发光.主要激发峰位于200~300 nm之间,属于4f75d1宽带吸收.考察了Tb3+掺杂浓度和Li+,Na+和K+作为电荷补偿剂对样品发光性能的影响,几乎不发生浓度猝灭现象,Li+的补偿效果最好.还确定了原料CaCO3、BaCO3、H3BO3的最佳配比,当H3BO3过量3%时,合成的晶体发光亮度最好.  相似文献   

7.
采用高温固相反应法合成了Tb3+激活的Sr2Mg(BO3)2荧光粉.利用XRD表征荧光粉的相纯度.研究了材料在VUV-UV范围的激发光谱和在VUV-UV光激发下的发射光谱及荧光衰减曲线.结果显示:Sr2Mg(BO3)2:Tb3+荧光粉的基质吸收带主峰位置大约位于178nm,Tb3+的最低自旋允许和最低自旋禁阻f-d跃迁吸收带分别位于235和278 nm,172nm激发下荧光粉的最强发射光谱主峰在543 nm,色坐标为(0.30,0.45),Tb3+的荧光寿命值约为2.8 ms.  相似文献   

8.
采用传统的高温固相法合成了一种新型的绿色荧光粉Sr3Y(PO4)3∶Ce3+,Tb3+,利用X射线衍射(XRD)和荧光光谱(PL)对该材料的晶体结构和光学性能进行表征。结果分析表明,制得样品的XRD图谱不含Sr3Y(PO4)3以外的杂峰,稀土掺杂并未改变基质的晶体结构,得到的样品为纯相的磷酸钇锶。从本文实验中明显观察到Sr3Y(PO4)3∶Tb3+的激发光谱和Ce3+的发射光谱在320~390nm有重叠,表明在Sr3Y(PO4)3基质中可存在从Ce3+到Tb3+的能量传递。在紫外光(315nm)激发下该荧光粉发射出了Ce3+的蓝光(320~420nm)和Tb3+的黄绿光(480~500nm)和(530~560nm),当Ce3+的浓度为7%,Tb3+的浓度由1%增大到50%时,通过Ce3+的4f→5d电子跃迁将能量传递到Tb3+,然后发生5 D4→7 Fj电子跃迁,该荧光粉发射光谱可由蓝光逐渐调节为黄绿光。本文绘制了Ce3+,Tb3+的能级和Sr3Y(PO4)3∶Ce3+,Tb3+荧光粉中的能量转移过程示意图,并详细阐述了由Ce3+到Tb3+的能量传递过程。通过对比Ce3+和Tb3+的发光强度以及由Ce3+到Tb3+能量转移效率的相对变化,可以得出,随着掺入的Tb3+浓度不断增加,Tb3+的发射强度(5 D4→7 Fj)和能量转移效率(Ce3+到Tb3+)也在增大,而Ce3+的发射强度却有了明显的下降。当Tb3+的浓度为50%时能量转移效率可高达80%。通过CIE色度图也可以看出,当Tb3+浓度不断增大,样品的色坐标从图中的蓝色区域移动到绿色区域。所以在紫外光激发下,Ce3+和Tb3+共掺Sr3Y(PO4)3可作为一种绿光荧光粉应用在白光LED或LCD背光源上。  相似文献   

9.
采用传统的高温固相反应法合成出(Y,Gd)BO3∶Tb荧光体,对所制得的荧光体进行了晶体结构分析,分析结果表明结晶良好。(Y,Gd)BO3∶Tb在147 nm真空紫外光激发下的发射主峰在544 nm(Tb3+的5D4→7F5跃迁),是一种绿色发光材料。样品的真空紫外激发光谱及紫外激发光谱表明,(Y,Gd)BO3∶Tb的基质吸收带位于150 nm附近。Gd3+离子对真空紫外区的光吸收有增强作用,存在着Gd3+→Tb3+的能量传递。测量了荧光粉在室温下的荧光衰减特性,其余辉时间约为8 m s,能够满足显示显像技术的要求。因此,(Y,Gd)-BO3∶Tb是一种有前景的PDP用绿色发光材料。  相似文献   

10.
以高温固相法合成了Ba3La(BO3)3∶Tb3 发光材料。在254nm紫外光激发下,研究了Ba3La(BO3)3∶Tb3 的激发光谱、发射光谱、发光强度与Tb3 浓度的关系。确定了Ba3La(BO3)3基质中Tb3 的自身浓度猝灭机理;探讨了助熔剂LiCO、敏化剂Ce3 、Bi3 的加入对荧光粉的发光强度的影响。  相似文献   

11.
Ca3La(BO3)3:Tb3+的合成与发光性质   总被引:2,自引:0,他引:2       下载免费PDF全文
高温固相反应法合成了Ca3La(BO3)3:Tb3+光致发光材料。利用扫描电镜和激光衍射分析仪测定了样品的晶粒形貌及粒径大小分布,利用荧光分光光度计研究了Ca3La(BO3)3:Tb3+的光致发光特性。确定了在Ca3La(BO3)3基质中Tb3+离子浓度对其发光强度的影响及其自身浓度猝灭机理;探讨了助熔剂Li2CO3、敏化剂Ce3+离子的加入对荧光粉发光强度的影响。  相似文献   

12.
采用高温固相法制备了Nd,Tm和Yb掺杂的ZBLAN玻璃上转换材料.Tm3+,Yb3+的摩尔浓度分别固定为0.01%,0.3%,Nd3+摩尔浓度变化范围为0.1%~2%.在室温下,测试了样品在300~1 000nm间的吸收光谱.在798 nm近红外光激发下,测试了样品的上转换光谱.实验发现,样品在798 nm红外光激发下发出了较强的多波段(红,蓝和绿)的可见光.由上转换可见光各波段的发射谱线,给出了能级跃迁机制.蓝光主要来源于Tm3+的激发态1G4到基态3H6的跃迁,绿光来源于Nd3+的2H7/2到基态4I9/2的跃迁,红光来源于Nd3+的2H11/2到基态4i9/2的跃迁.研究发现,在Nd3+,Tm3+,Yb3+:ZBLAN玻璃样品中存在激发态吸收,能最转移和交叉弛豫等上转换过程.其发光机理是Nd3+,TM3+和Yb3+离子之间的能量转移.根据Nd3+摩尔浓度不同其上转换发光强度不同,分析了掺入稀土的浓度对上转换发光效率的影响.当Nd3+浓度为1.5%(摩尔分数)时上转换发光最强,大于1.5%后发光开始减弱.  相似文献   

13.
YBO3:Eu3+纳米晶发光特性   总被引:6,自引:0,他引:6       下载免费PDF全文
用水热法制备了YB03:Eu3+纳米材料,通过改变其反应条件对纳米颗粒的大小和形貌进行了控制,对其发射光谱进行分析并与体材料进行了比较.在纳米材料中,很大比例的稀土离子微观环境受到表面的影响,这种影响可能使稀土离子的Judd-Ofelt参数Ω2增大,从而使Eu3+的5Do→7F2的发射加强,红色发光材料的色纯度提高.  相似文献   

14.
利用微乳液水热法制备出GdF3:Eu^3+纳米晶及纳米棒。用X射线粉末衍射(XRD)和透射电子显微镜(TEM)等手段对材料的结构、形态及粒径大小等进行了表征。室温下真空紫外(vuv)光谱及荧光光谱表明GdF3:Eu^3+纳米晶中的Gd^3+离子吸收一个光子,并将能量分两步传递给Eu^3+,发生了双光子发射。从各跃迁的积分强度和量子效率表达式可以得到材料在160nm紫外光激发下的量子效率约为170%。  相似文献   

15.
当用582.6nm的黄色激激发Nd^3+:LaCl的^2G7/2+^4G5/2能级时,观察到了^4D3/2和^2G9/2能级的兰光和紫外发射。研究表明,^2D3/2上转换的机理是能量传递和激发态吸收而^2G9/2则是由于^4G5/2+^G5/2→^2G9/2+^F7/2交叉驰豫过程。通过对12K下^4D3/2→^4I11/2荧光衰减曲线的分析, 得到 能量传递几率为wt1=1468s^-1。测量和讨论了Nd^3+:LaCl3和NdCl3主要发光能级室温和12K下的寿命。  相似文献   

16.
白光LED用LiSrBO_3∶Sm~(3+)材料的光谱特性(英文)   总被引:3,自引:1,他引:2  
采用固相法制备了一种新型的白光LED用LiSrBO3∶Sm3+红色发光材料,并研究了材料的光谱特性.材料的激发与发射光谱显示其能够被404nm近紫外光激发,发射599nm红光,很好的符合近紫外光激发下白光LED的需要.研究了Sm3+浓度对材料发射强度的影响,发现Sm3+浓度为3mol%时,强度最大.添加Na+或K+也可提高LiSrBO3∶Sm3+材料的发射强度.  相似文献   

17.
合成了Eu3+,Tm3+和Yb3+掺杂的NaYF4材料.360 nm光激发呈蓝色发光,峰值位于452 nm,对应Tm3+的1D2→3F4跃迁;395 nm光激发旱橙色发光,峰值位于591 nm,对应Eu3+的5D0→7F1跃迁;409 nml光激发呈红色发光,峰值位于613 nm,对应Eu3+的5D0→7F2跃迁;980 nm光激发呈蓝色和红色发光,发光峰位于474和646 nm.蓝光来源Tm3+的1G4→3H6跃迁,红光来源Tm3+的1G4→3F4跃迁.在双对数曲线中,蓝光474 nm和红光646 nm的斜率分别为2.1和2.4,在980 nm光激发下,蓝光和红光发射都是双光子过程.还研究了材料的吸收光谱,并利用X射线衍射,扫描电镜测试了材料的物相结构和微观彤貌.结果表明:NaYF4:Eu3+,Tm3+,Yb3+材料具有较规则的六方相结构,结品良好.  相似文献   

18.
赵谡玲  侯延冰  徐征 《发光学报》2006,27(2):191-195
水热法合成了YLiF4:Er3+,Tm3+,Yb3+,其中Er3+、Yb3+和Tm3+的摩尔分数分别为1%、1.5%和2%。当用355nm光激发时,其发光为蓝色,峰值位于450nm,对应于Tm3+1D23F4跃迁。用378nm激发时,发光为绿色,主要发光峰位于552nm。980nm光激发时,发光为白色,发光峰分别位于665(651),552(543),484,450nm处,并在648nm处还观察到了一个发光峰,其中最强的发射为红光。YLiF4:Er3+,Tm3+,Yb3+的蓝光来源于Tm3+的激发态1G4到基态3H6的跃迁,绿光来源于Er3+4S3/22H11/2到基态4I15/2的跃迁,红光既来源于Tm3+1G43F4的跃迁,也来源于Er3+4F9/24I15/2的跃迁。在上转换发光中,还探测到了紫外光359nm的发射。监测665nm得到的激发光谱不同于监测552nm的激发光谱,在665nm的激发光谱中出现了对应Tm3+1G4能级的峰。在双对数曲线中,蓝光484nm、绿光552nm和红光665nm的斜率分别为2.25、2.28和2.21,紫外光359nm的斜率为2.85。因此在980nm激发下,蓝光484nm、绿光552nm和红光665nm都是双光子过程,紫外光359nm的发射是三光子过程。  相似文献   

19.
CaTiO3:Pr3+长余辉玻璃的制备与发光性能   总被引:3,自引:1,他引:2  
用二次熔融法制备了CaTiO3:Pr^3+红色长余辉玻璃。测量了样品的发射光谱,其发射光谱峰值为611.7,614.5nm,对应于Pr^3+的4f-4f(^1D2→^3H4)跃迁,与CaTiO3:Pr^3+晶态长余辉发光粉的发射光谱峰值相一致。玻璃粉与发光粉的质量配比在95:5~80:20时,都可以形成玻璃态并得到红色长余辉发光。研究了气氛和熔融温度对发光性能的影响,在空气环境下,800℃即可得到性能良好的样品。  相似文献   

20.
以Y2O3为基质材料,掺杂不同含量的Er3 ,采用共沉淀法制备出性能良好的Er3 :Y2O3纳米粉,并将粉体在1 700℃和真空度为1×10-3Pa下烧结8 h得到Er3 :Y2O3透明陶瓷.用X射线衍射仪(D/MAX-RB)、透射电子显微镜(EM420)、自动记录分光光度计(DMR-22)、荧光分析仪(F-4500)和发射波长为980 nm的半导体激光器分别对样品的结构、形貌和发光性能进行了研究.结果表明:Er3 完全固溶于Y2O3的立方晶格中,Er3 :Y2O3粉体大小均匀,近似球形,尺寸约40~60 nm左右.Er3 :Y2O3透明陶瓷相对密度为99.8%,在长波长范围内其透光率超过60%,在波长为980 nm的激光下有两个上转换发光带,其中绿色发光中心波长位于562 nm,红色发光中心波长位于660 nm,分别对应4S3/2/2H11/2→4I15/2和4F9/2→4I15/2的跃迁;随着铒浓度的提高颜色从绿色向红色转变,Er3 的掺杂浓度不宜超过2%,超过这个范围,对材料发光强度的增强作用反而很小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号