首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
王健  揣荣岩 《物理学报》2017,66(24):247201-247201
多晶硅薄膜具有良好的压阻特性,晶粒结构和掺杂浓度决定其压阻特性.一般通过调节掺杂浓度改变压阻参数,但现有的多晶硅薄膜压阻系数与掺杂浓度的理论关系和适用范围不够全面.为了完善多晶硅薄膜压阻理论,基于多晶硅纳米薄膜隧道压阻模型,以及硅价带和空穴电导质量随应力改变的机理,提出了一种p型多晶硅薄膜压阻系数算法.该算法分别求取了晶粒中性区和复合晶界区的压阻系数π_(11),π_(12)和π_(44)的理论公式,据此可以计算任意择优晶向排列多晶硅的纵向和横向压阻系数.根据材料的结构特性,求取了p型多晶硅纳米薄膜和普通多晶硅薄膜应变因子,绘制了应变因子与掺杂浓度的关系曲线,与测试结果比较,具有较好的一致性.因此,该算法全面和准确,对多晶硅薄膜的压阻特性的改进和应用具有重要意义.  相似文献   

2.
王岩松  王文全  袁洲  张立功  徐世峰 《物理学报》2008,57(10):6540-6544
采用聚合物前驱体热解法制备四种加入不同热固化剂浓度的SiCN陶瓷并研究了它们的压阻效应.研究发现,热固化剂浓度对材料的电导率和压阻效应都有很大影响,只有加入适量浓度的热固化剂才会使SiCN陶瓷具有高的电导率和明显的压阻效应.借助拉曼光谱获得了材料中碳团簇的信息,进而用渗流-遂穿导电模型解释了材料的压阻行为,SiCN陶瓷的压阻特性由材料中自由碳团簇的含量和分布决定,而碳团簇的形成则由热固化剂浓度决定. 关键词: SiCN 压阻效应 热固化剂  相似文献   

3.
 利用直流磁控溅射薄膜工艺制备阵列式薄膜锰铜压阻计,以氧化铝作为基片和绝缘封装材料。在结构上,4个具有相同阻值的薄膜锰铜计在同一氧化铝基片上呈对称分布。51.72 GPa压力下的动态加载实验表明,4个计的压阻一致性好,无高压旁路效应,验证了薄膜锰铜压阻计动态测试的准确性和可靠性。  相似文献   

4.
研究了多壁碳纳米管(MWNTs)薄膜的湿敏特性,实验所用的多壁碳纳米管是用热灯丝化学气相沉积法(CVD)合成的.分别对未修饰和修饰的多壁碳纳米管膜温度和湿度特性进行研究后发现,修饰的多壁碳纳米管对温度和湿度非常敏感,且对湿度的响应时间和恢复时间短,重复性好.而未修饰的多壁碳纳米管对温度和湿度不太敏感.对修饰多壁碳纳米管的湿敏特性进行了理论分析,给出了其理论表示式. 关键词: 多壁碳纳米管 化学修饰 湿敏特性 物理吸附  相似文献   

5.
安萍  郭浩  陈萌  赵苗苗  杨江涛  刘俊  薛晨阳  唐军 《物理学报》2014,63(23):237306-237306
针对传感器的敏感单元发展需求,提出了一种碳纳米管复合材料.该材料是以碳纳米管作为填充粒子,结合聚二甲基硅氧烷(PDMS)有机基体,采用超声共混方法制备的一种新型传感器敏感元件.详细分析研究了复合材料的制备工艺参数,以及在不同工艺参数下该复合材料的力敏特性.扫描电镜测试表明碳纳米管在PDMS中分散均匀且镶嵌良好.通过对不同体积分数的碳纳米管与PDMS复合材料进行电学性能测试,研究薄膜的"力-电阻"和"力-电容"耦合性能,测试了薄膜结构的力敏效应.计算得到复合薄膜材料的压阻灵敏度因子达到40,压电容灵敏度因子达到70.实验研究表明,通过改变碳纳米管与PDMS的比例,可以很好地调节其电子输运特性以及电阻和电容的应力敏感特性,可以为该类型的力敏材料在不同的力敏传感技术领域提供新的研究思路.  相似文献   

6.
水溶性多壁碳纳米管/铜酞菁染料   总被引:4,自引:0,他引:4  
采用化学氧化法制备了可溶性多壁碳纳米管,借助超声作用把可溶性多壁碳纳米管分散在水中形成水溶胶,采用自组装技术制备了可溶性多壁碳纳米管/铜酞菁染料的复合薄膜,采用原子力显微镜、红外光谱、吸收光谱和荧光光谱对可溶性多壁碳纳米管及其水溶胶、自组装复合薄膜进行了表征.实验结果显示多壁纳米碳管水溶胶具有较好的组装成膜性能,吸收光谱结果表明染料分子在膜内形成了J聚集体,荧光光谱结果表明复合薄膜的荧光来自于铜酞菁染料,引入多壁碳纳米管对染料分子的荧光发射特性有一定影响.  相似文献   

7.
在线非接触测试巨磁电阻效应对磁电子器件的工业化生产具有重要的意义 .用红外光谱研究了 (CoFe) 1 -xAgx颗粒薄膜的磁折射效应 ,研究表明在红外波段 ,一级近似可以认为巨磁电阻比值与磁折射变化率成正比 ,可以利用磁折射效应作为在线非接触工具测量与自旋散射相关的巨磁电阻效应 .  相似文献   

8.
氧化钒-碳纳米管复合薄膜的制备及特性   总被引:1,自引:0,他引:1  
提出了一种制备氧化钒热敏电阻薄膜的新方法。采用紫外光和过氧化氢相结合的方法,对多壁碳纳米管进行功能化处理,然后通过溶胶-凝胶法,使功能化碳纳米管与V2O5相复合,制备氧化钒-碳纳米管复合薄膜。与单纯的氧化钒薄膜相比,氧化钒-碳纳米管复合膜的薄膜方阻和光学带隙发生减小,而电阻温度系数(TCR)和光吸收率相应增大。复合膜还具有更高的载流子迁移速率,更加适合应用到红外探测器当中。  相似文献   

9.
王建立  熊国平  顾明  张兴  梁吉 《物理学报》2009,58(7):4536-4541
用Pt细丝代替已有3ω方法中的薄膜热线,并设计了基于Labview程序的虚拟测量系统,准确、方便地测量了聚丙烯复合材料的热导率. 测量结果发现,多壁碳纳米管/丁苯橡胶/聚丙烯三元复合材料的热导率随着多壁碳纳米管/丁苯橡胶粉末含量的增加变化不大;多壁碳纳米管/聚丙烯复合材料的热导率随着多壁碳纳米管含量增加而增大;复合材料热导率远小于简单混合规则预测的结果,而与有效介质理论符合很好. 关键词: ω法')" href="#">3ω法 多壁碳纳米管 聚丙烯复合材料 热导率  相似文献   

10.
一种新的庞磁电阻氧化物薄膜La1-xPrxMnO3(x=0.1,0.2)薄膜用脉冲激光沉积(PLD)方法生长在(100)SrTiO3单晶基底上.XRD结果显示薄膜具有很好的外延单晶取向.电输运和磁性质的研究表明薄膜具有显著的庞磁电阻效应(CMR)效应,其中磁电阻比率达95%(在5T的磁场下).X射线光电子能谱(XPS)的结果表明薄膜体系中Pr离子的价态为+4价,因此该薄膜很可能是电子掺杂的庞磁电阻体系.  相似文献   

11.
超薄多晶硅薄膜具有优异的压敏特性。铝诱导层交换(ALILE)制备多晶硅薄膜具有成膜温度低薄膜性能优良等特点。利用ALILE方法在玻璃基底上低温条件下制备了50 nm超薄多晶硅(poly-Si)薄膜,并对薄膜微观结构及压阻特性进行了研究。Raman光谱在521 cm-1出现尖锐、对称的特征峰,表明超薄多晶硅薄膜晶化状态良好。此外,在拉曼光谱480 cm-1处没有明显出现a-Si的Raman特征峰也说明制备的poly-Si薄膜样品完全结晶;XRD光谱表明ALILE制备薄膜在(111)和(220)晶向择优生长,晶粒尺寸约5 μm;霍尔效应测试结果表明:ALILE制备薄膜为p型掺杂,空穴浓度为9×1018~6×1019 cm-3;压阻特性研究表明:ALILE超薄多晶硅薄膜应变系数(GF)达到了60以上,且与薄膜厚度相关;应变温度相关系数(TCGF)在-0.17~0%℃范围内;电阻温度相关系数(TCR)在-0.2~-0.1%℃范围内。ALILE超薄多晶硅薄膜具有GF大、TCGF小和TCR小等特点。因此,有望在压力传感器领域得到应用。  相似文献   

12.
Lithium-sulfur batteries have a poor cyclability and inferior rate capability due to the shuttle effect of lithium polysulfides. To solve these problems, a sulfur-coated MWCNT composite (S/MWCNT) was coated with conductive polypyrrole (PPy) to trap the polysulfides and facilitate charge and lithium ion transport. From the contact angle measurement, it is found that the PPy coating improves the wettability of the S/MWCNT composite. Compared with the bare S/MWCNT composite, the PPy-coated S/MWCNT composite cathode exhibited improved cycle stability and high-rate performance. A reversible discharge capacity of 671 mAh g?1 was maintained after 50 cycles at 3 C for the PPy-coated composite. The effect of PPy coating on kinetic property was investigated by electrochemical impedance spectroscopy (EIS). The electrolyte resistance, surface film resistance, charge transfer resistance, lithium ion diffusion coefficient, and exchange current density were evaluated from the EIS measurements. The EIS results reveal that the PPy coating increases both Li ion diffusion into the cathode and exchange current density. The as-prepared PPy-coated S/MWCNT composite can be considered to be a promising candidate for high capacity and high-rate performance cathode material.  相似文献   

13.
A reduced graphene oxide/multiwalled carbon nanotube (RGO/MWCNT) hybrid sandwiched film with different MWCNTs content was prepared by vacuum-assisted self-assembly from a complex dispersion of graphene oxide (GO) and MWCNTs followed by heat-treating at 200 °C for 1 h in a vacuum oven to reduce the GO into RGO. The free-standing RGO/MWCNT hybrid sandwiched film before heat-treatment showed a layered structure with an entangled network of MWCNTs sandwiched between the GO sheets. This unique structure not merely contribute to remove the oxygen-containing groups in GO during the heat-treatment, but also decrease the defects for electron transfer between RGO layers, which enhances the electrochemical capacitive performances of graphene-based films. A specific capacitance up to 379 F/g was achieved based on RGO/MWCNT with 30 % MWCNTs mass fraction at 0.1 A/g in a 6 M KOH electrolyte. The excellent performance of RGO/MWCNT hybrid sandwiched film signifies the importance of controlling the surface chemistry and sandwiched nanostructure of graphene-based materials.  相似文献   

14.
The multi-walled carbon nanotube (MWCNT) dispersed polymethylmethacrylate (PMMA) composite membranes have been prepared for hydrogen gas permeation application. Composite membranes are characterized by Raman spectroscopy, optical microscopy, X-ray diffraction, electrical measurements and gas permeability measurements. The effect of electric field alignment of MWCNT in PMMA matrix on gas permeation has been studied for hydrogen gas. The permeability measurements indicated that the electrically aligned MWCNT in PMMA has shown almost 2 times higher permeability for hydrogen gas as compare to randomly dispersed MWCNT in PMMA. The enhancement in permeability is explained on the basis of well aligned easy channel provided by MWCNT in electrically aligned sample. The effect of thickness of membrane on the gas permeability also studied and thickness of about 30 μm found to be optimum thickness for fast hydrogen gas permeates.  相似文献   

15.
The aim of this paper is to analyze vibrational behavior and the sound wave propagation in the finite-length fluid-filled multi-walled carbon nanotubes (MWCNTs) and to determine the exact sound pressure load effect on it, and compare it to what has been used by the other researchers. For this purpose, the solution of the modified complex Helmholtz equation is derived by considering the non-rigidity of the CNT and the wave reflections at the open ends of the MWCNT. These investigations are very important for potential application of CNT-filled polymeric foam that is used as sound absorber. In this paper, in formulating the sound pressure load exerted on the innermost tube of the finite-length fluid-filled MWCNT, the following points have been studied for the first time: (i) the energy loss in the fluid, which cannot be ignored in the high frequency analysis; (ii) the non-rigidity of the MWCNT through considering finite acoustical impedance for its walls; (iii) the wave reflections at the open ends of the finite-length MWCNT to calculate the sound pressure load term which is coupled with the dynamic equations of motion for the finite-length fluid-filled MWCNT. The results show that ignoring the mentioned points would cause errors in the prediction of the sound pressure load exerted on the finite-length fluid-filled MWCNT.  相似文献   

16.
We investigated the surface plasmon resonances of multi-wall carbon nanotube (MWCNT) for applications as the optical antenna. We calculated the near-field and far-field response of MWCNT using finite integral technique. In addition, the effect of shape and dimensions on the optical response of MWCNT was studied. Also, the dielectric properties of MWCNT obtained from the experimental results in the literature were fitted with a Drude–Lorentz model. Finally, a full mapping of the geometry (length and radius) dependence for MWCNT was presented and discussed.  相似文献   

17.
The present work reports on novel four-layer thermally driven piezoresistive cantilevers implemented in one- and two-dimensional arrays for parallel proximity scanning. There, the heater (metallic meander), the piezoresistive deflection sensor, and the metal actuation film with significantly higher thermal expansion coefficient make up separate layers. Actuation efficiency and cross-talk of the novel cantilever design are studied and compared with two recent designs: thin metallic film and ion-implanted heater. The novel actuator, integrated on a 240 μm long and 3 μm thick silicon cantilever and supplied by V dc=1 V enables deflections up to 5 μm of the AFM-tip with an actuation efficiency of about 170 nm/mW and suppressed cross-talk between actuator and sensor.  相似文献   

18.
Abstract

A series of polycarbonate (PC)/acrilonitrile butadiene rubber (NBR)/multi-wall carbon nanotube (MWCNT) nanocomposites were prepared via melt compounding in an internal mixer. The effect of the MWCNT content on the morphology and the thermal and mechanical properties of the prepared nanocomposites were studied. The morphologies of the samples were investigated by field-emission scanning electron microscopy (FESEM) and the thermal properties by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile mechanical results of the nanocomposites showed a decrease in elongation at break with an increase of only 2?wt% of MWCNT content in the PC/NBR blends, and an increasing value in elastic modulus and tensile strength of the nanocomposites. The FESEM images showed that the MWCNTs had good affinity with the polymers and no compatibilizer was needed for making the nanocomposites. The DSC and TGA results showed an increase in thermal stability with addition of MWCNTs because of the more thermally stable carbon nanotubes particles which was uniformly dispersed within the nanocomposites.  相似文献   

19.
A two-step synthesis for multi-walled carbon nanotube (MWCNT) coating was reported that includes an electrochemical deposition followed by 10 eV hyperthermal proton bombardment at a dose as low as 1×1016 H+/cm2. Electrochemical deposition ensures an improved adhesion of MWCNT coating on metal substrates, while hyperthermal proton bombardment effectively induces inter-chain cross-linkages among MWCNTs, leading to a coating with both higher stiffness and mechanical strength. It was found experimentally that the MWCNT film made by the proposed two-step synthesis can better resist spinning and ultrasonic rinsing in both organic (hexane) and aqueous (water) media. PACS 61.46.+w; 68.35.Np; 68.37.Ps; 81.15.Pq  相似文献   

20.
In present study diamond like carbon (DLC) films were deposited by closed drift ion source from the acetylene gas. The electrical and piezoresistive properties of ion beam synthesized DLC films were investigated. Diode-like current–voltage characteristics were observed both for DLC/nSi and DLC/pSi heterostructures. This fact was explained by high density of the irradiation-induced defects at the DLC/Si interface. Ohmic conductivity was observed for DLC/nSi heterostructure and metal/DLC/metal structure at low electric fields. At higher electric fields forward current transport was explained by Schottky emission and Poole–Frenkel emission for the DLC/nSi heterostructures and by Schottky emission and/or space charge limited currents for the DLC/pSi heterostructures. Strong dependence of the diamond like carbon film resistivity on temperature has been observed. Variable range hopping current transport mechanism at low electric field was revealed. Diamond like carbon piezoresistive elements with a gauge factor in 12–19 range were fabricated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号