首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
60℃水浴条件下,过氧化氢(H_2O_2)还原氯金酸(HAuCl_4)生成金纳米粒子反应进行缓慢,加入纳米酶—石墨烯量子点(发蓝光)(GQDb)做催化剂后,H_2O_2还原HAuCl_4生成金纳米粒子反应加快,H_2O_2与HAuCl_4反应生成的金纳米粒子增多,体系中显示出较强的共振瑞利散射光谱(RRS)效应。加入焦性锑酸钾(Coke antimony potassium,CAP)配体后,GQDb被配体包裹,抑制GQDb的催化作用。当溶液中加入Na~+时,Na~+与CAP反应生成Na~+-CAP复合物,CAP从GQDb表面脱落,使GQDb恢复其催化作用。并且随着Na~+浓度增大,体系的RRS信号增强,当Na~+浓度在0.166~1.66μmol·L~(-1)范围内,其ΔI_(372nm)值与Na~+浓度呈良好的线性关系,线性方程为ΔI_(372nm)=1972.6c+219.69,线性相关系数为0.976 1,检测限为0.081μmol·L~(-1)。据此,建立了一种检测Na~+的GQDb催化RRS新方法。  相似文献   

2.
在60℃水浴条件下,过氧化氢(H_2O_2)还原HAuCl_4生成金纳米溶胶反应缓慢,加入氧化石墨烯纳米带(GONR)等纳米酶催化剂后,反应加快。当有丁二酮肟(DMG)配体存在时,DMG吸附在GONRs表面,导致GONR的催化作用减弱;而当溶液中存在Ni~(2+)时,形成Ni(DMG)2复合物,使DMG从GONRs表面脱附,此时GONRs得到释放,使得从而GONRs催化效应活化,催化作用增强。随着Ni~(2+)浓度的增加,脱附的GONRs越多,催化H_2O_2-HAuCl_4反应加快,体系生成的金纳米粒子增多,体系的RRS信号增强,当Ni~(2+)浓度在0.07~0.98μmol·L~(-1)浓度范围内,ΔI_(540nm)与Ni~(2+)浓度呈良好的线性关系,线性方程为ΔI_(540nm)=729.31c+32.049,线性相关系数R~2=0.991 4,检测限为0.028μmol·L~(-1)。  相似文献   

3.
在70℃水浴条件下,柠檬酸三钠(TCA)还原HAuCl_4反应进行缓慢,加入石墨烯量子点(GQDs)作催化剂,反应加快。增大GQDs的加入量,反应随之显著增强,体系中生成的金纳米粒子增多,产生较高的共振瑞利散射(RRS)强度。在加入BaCl_2配体后,GQDs表面被BaCl_2包裹,抑制了GQDs的催化作用;当溶液中硫酸根离子(SO_4~(2-))存在时,生成BaSO_4沉淀,GQDs从BaCl_2表面脱离,此时GQDs恢复其催化作用,并随着SO_4~(2-)浓度的增加,GQDs的脱附量增多,体系的反应速度加快,催化反应随之增强,RRS信号线性增强。信号增强值与SO_4~(2-)在0.067~1.67μmol·L~(-1)范围内呈良好线性关系,检测限为0.041μmol·L~(-1),线性方程为ΔI_(570nm)=93.3c+0.4。  相似文献   

4.
在钾适配体(ssDNA)探针存在时,ssDNA吸附在纳米银表面,导致纳米银的催化作用弱,而当溶液中存在钾离子时,形成钾离子-ssDNA复合物,使ssDNA从纳米银表面脱附,此时纳米银得到释放,从而纳米银催化作用增强。随着钾离子浓度的增加,脱附的银纳米粒子越多,催化H_2O_2还原HAuCl_4反应加快,随着钾离子加入量的增大,催化反应速率随之显著增强,生成的金纳米溶胶具有较高的共振瑞利散射(RRS)效应,导致体系在300nm处的RRS强度线性增强。钾离子浓度在0~1.5μmol·L~(-1)范围内,于300nm处的RRS强度增强值ΔI呈良好的线性关系。据此,可建立一种间接检测钾离子的RRS方法。  相似文献   

5.
一个检测痕量汞离子的鱼精DNA修饰纳米金共振散射光谱法   总被引:2,自引:0,他引:2  
在pH 7.0 Tris-HCl缓冲溶液及0.017 mol.L-1NaCl介质中,鲱鱼精DNA与10 nm的金纳米粒子形成较稳定的结合物使得金纳米粒子不聚集,体系的散射信号较弱。当有Hg2+存在时,DNA与Hg2+形成更稳定的DNA-Hg2+结合物,金纳米粒子聚集导致572 nm处的共振散射峰增强。在3.87μg.mL-1金纳米粒子-11.7μg.mL-1DNA-pH 7.0~17 mmol.L-1NaCl条件下,Hg2+浓度c在3.3~3 333.3 nmol.L-1范围内与572 nm处的共振散射强度增强值ΔI572 nm成良好线性关系,其回归方程、相关系数、检出限分别为ΔI572 nm=0.019c+5.0,0.999 1,2.5 nmol.L-1。该法用于水样分析,结果与冷原子吸收光谱法一致,相对标准偏差为5.1%。  相似文献   

6.
血红蛋白(Hb)是一种含铁元素的金属蛋白质,人体内血红蛋白含量过高或过低都会导致疾病。本文使用11-巯基十一烷酸与甲硫氨酸合成双配体修饰的金纳米簇,设计了一种用于荧光法检测血红蛋白的纳米传感器。实验结果证明在过氧化氢和血红蛋白分别存在的情况下,金纳米簇的荧光均可以发生微弱的猝灭。但当两者同时加入到金纳米簇溶液中时,纳米簇的荧光强度降低程度大大增强。猝灭机理可能是基于血红蛋白催化过氧化氢生成氧化性更强的羟基自由基,破坏Au—S键。在优化条件下,荧光强度与血红蛋白浓度在0.08~8.0mol·L~(-1)范围内呈良好的线性关系,检出限为0.047mol·L~(-1)(S/N=3)。该方法成功地用于血液样本中血红蛋白的定量分析。  相似文献   

7.
L-半胱氨酸具有还原氯金酸诱导合成金纳米带(AuNBs)的作用,但制备所需时间较长。本文研究了50℃水浴下条件下,用纳米金(AuNPs)等纳米粒子催化制备金纳米粒子,可以缩短反应时间至3~5min。并对新制成的金纳米粒子(Au/AuNPs)的吸收光谱,共振瑞利散射(RRS)光谱和表面增强拉曼(SERS)光谱进行了研究。  相似文献   

8.
基于酸性介质的条件下,银纳米粒子(AgNPs)与探针分子Rh6G会产生较强的表面增强拉曼散射(Surface enhanced Raman spectroscope,SERS)效应,当溶液中加入Mo(Ⅵ)时,Rh6G与Mo(Ⅵ)发生络合反应形成一个Rh6G-Mo(Ⅵ)复合物,随着Mo(Ⅵ)浓度的增大,游离的Rh6G减少,使得体系的SERS效应降低,当Mo(Ⅵ)浓度在0.02~0.8μg·mL~(-1)范围内,其ΔI_(1 509cm~(-1))值Mo(Ⅵ)浓度呈良好的线性关系,线性方程为ΔI_(1 509cm~(-1))=542.09c+175.24,线性相关系数为0.995 6,检测限为0.008μg·mL~(-1),据此可建立一种Mo(Ⅵ)-Rh6G-AgNPs体系的SERS分析新方法。  相似文献   

9.
在pH7.0的Na2HPO4-NaH2PO4缓冲溶液中,纳米金与适配体(aptamer)结合形成较稳定的aptamer-Au复合物,且不被NaCl聚集。在85℃水浴中,K+与aptamer作用后折叠形成稳定的G-四分体结构复合物且释放出纳米金。在高浓度盐作用下,纳米金聚集成较大粒径的纳米金颗粒,导致体系563nm处的共振散射强度增大,其平均粒径为120nm。文章研究了K+ -随机单链DNA1(ssDNA1)-纳米金、K+ -ssD-NA2-纳米金和K+ -aptamer-纳米金体系的共振散射光谱特性,并用圆二色光谱技术证明了核酸适配体结构的变化。考察了pH、NaCl浓度、aptamer浓度、纳米金用量以及Cu2+、Mg2+、Pb2+、Ca2+、Al3+、Zn2+Fe3+等常见重金属离子等对测定K+的影响,结果显示这些离子不干扰测定,该法具有较好的选择性。在选定条件下,K+浓度在0.67~3350μmol·L-1范围与共振散射峰值ΔI呈良好的线性关系,回归方程、相关系数、检出限分别为ΔI=0.167c-0.7,0.9932,0.3μmol·L-1 K+。该法用于血清样品分析,结果与离子选择电极法一致。  相似文献   

10.
以pH 4.0HAC-NaAC缓冲溶液为介质,用硼酸碘化钾溶液(BKI)作为O3吸收剂。O3将I-氧化生成为I2,溶液中过量的I-与I2又可形成I-3,有阳离子表面活性剂(CS)如氯代十六烷基吡啶(CPCl),溴代十四烷基吡啶(TPB),十六烷基三甲基溴化铵(CTMAB),十四烷基苄基二甲基氯化铵(TDMAC)存在时,CS与I-3形成稳定的(CS-I3)n缔合微粒,在470nm处有一个较强的共振瑞利散射峰(RRS),随着O3浓度的增大,体系中的I-3增多,I-3与CS形成的(CS-I3)n缔合微粒越多,470nm处的RRS强度I增强,O3浓度与其增强值ΔI成线性关系,各体系的线性范围分别为15~50,50~100,5~25,1~50μmol·L-1,回归方程分别为ΔI=8.81c-4.01,ΔI=5.44c-3.11,ΔI=15.39c-1.55,ΔI=16.88c+0.51,检出限分别为4.9,12,2.85,0.56μmol·L-1 O3。实验考察了共存物质的影响,当O3浓度为2.5×10-6 mol·L-1,相对误差在±10%内时,4.0×10-5 mol·L-1 Hg2+,8.7×10-5 mol·L-1 Fe3+,5.0×10-5 mol·L-1 Ca2+,2.5×10-5mol·L-1 Zn2+和Cu2+,2.8×10-6 mol·L-1 Pb2+和Cr3+,4.2×10-5 mol·L-1 Mg2+,Mn2+和Ba2+对体系的测定无干扰。说明该方法具有良好的选择性。选用TDMAC体系检测空气中的O3,结果令人满意。采用激光散射技术研究了(TDMAC-I3)n缔合微粒体系的粒径分布。当通入O3后,过量KI与O3反应形成I-3,I-3与TDMAC反应生成(TDMAC-I3)n缔合微粒,其粒径集中分布在1 106~3 091nm之间。  相似文献   

11.
高灵敏的由柠檬酸钠稳定的金纳米粒子通过共振瑞利散射法(RRS)和比色法测定普萘洛尔。利用柠檬酸钠作为还原剂,成功合成了表面带负电的金纳米粒子。在pH 4.6的BR缓冲溶液中,普萘洛尔由于质子化带正电,因此金纳米粒子与普萘洛尔可以通过静电作用结合,从而使金纳米粒子聚集,导致体系的RRS信号增强,并且伴随溶液的颜色由酒红色变成紫色。一种高灵敏的RRS和比色法因此建立起来用于测定普萘洛尔,两种方法对应的线性范围分别为0.2–5.2和0.4–4.4μg·mL-1。但是将该方法用于其他洛尔类药物(比索洛尔、阿替洛尔、美托洛尔和阿罗洛尔)的测定,发现这些洛尔类药物对柠檬酸钠修饰的金纳米粒子探针没有如普萘洛尔般的响应,因此可以用此法识别洛尔类药物混合物中的普萘洛尔。  相似文献   

12.
表面增强拉曼散射(SERS)增强基底的制备是实现SERS技术高灵敏度探测的关键因素,利用光操控技术制备金属纳米粒子聚集体是近来SERS领域研究的热点。利用飞秒激光湿法刻蚀技术,在硅片表面5 mm×5 mm范围内刻蚀横截面积(宽度×深度)为10μm×7μm, 30μm×12μm, 60μm×15μm, 70μm×19μm和90μm×21μm的狭槽线阵,制备截面积不同的微纳硅基衬底(SiMS)。应用光操控技术结合SERS方法,在金纳米溶胶中加入硅基衬底。并将激光对焦在衬底狭槽内,在光辐射压力的作用下,金纳米粒子沿光束的传播方向运动,聚集于微纳结构表面的狭槽内,形成金纳米粒子聚集体,促进"热点"效应,提高SERS探测的灵敏度,实现了在硅基微纳结构衬底上探测物的SERS增强。实验表明,利用光辐射压力和光梯度力的合力,金属纳米粒子能有效聚集在硅基微纳结构衬底表面的狭槽中,形成更多的"热点",从而可大幅提高SERS增强效果。以芘为探针分子,随着狭槽截面积的增加, SERS信号逐渐增强,狭槽截面积为70μm×19μm时达到最强,超过该截面积后,拉曼信号强度开始降低, SERS强度最高增强了约两个数量级,最低检测浓度为5.0×10~(-9) mol·L~(-1),在低浓度范围内(5.0×10~(-9)~1.0×10~(-7) mol·L~(-1)),芘位于588和1 234 cm~(-1)处特征峰强与浓度的关系曲线呈现较好的线性相关性,其拟合方程及线性相关系数分别为0.992和0.971。以截面积为70μm×19μm的微纳衬底进行了重复性实验,每完成一次实验,关掉激光器,待激光的作用消失,狭槽内聚集的金纳米粒子重新分散在溶液中,进行下一次实验。选取微纳衬底8个不同位置,每个位置重复三次实验,衬底不同位置芘的588和1 234 cm~(-1)两个特征峰峰强的相对标准偏差(RSD)分别为9.9%和2.0%,具有较好的重复性。与仅使用金纳米颗粒相比,该方法保留了金纳米颗粒重复性好的优势,同时具有更高的增强效应和衬底清洗后可重复使用的优点。研究表明,基于硅基微纳结构衬底的光操控-SERS方法,可极大地提高金纳米颗粒的SERS效应,在化学和生物学等领域的物质检测分析方面具有广阔的应用前景。  相似文献   

13.
在pH 2.27的柠檬酸钠-盐酸缓冲溶液中,纳米金对氯金酸-盐酸羟胺生成较大粒径金颗粒这一慢反应具有较强的催化作用。较大粒径金颗粒在600~1 000 nm处有一个较宽的吸收峰。将纳米金标记羊抗人IgG获得免疫纳米金,免疫纳米金也具有相同催化效果。在一定条件下,金标记羊抗人IgG与IgG发生特异性结合生成纳米金免疫复合物。以16 000 rpm速度离心分离获得未反应的纳米金标抗上层溶液。以它作为催化剂催化氯金酸-盐酸羟胺微粒反应,700 nm处的吸光度A700 nm线性降低。其降低值ΔA700 nm与IgG在0.1~10 ng·mL-1范围内呈良好线性关系, 检出限为0.06 ng·mL-1。本法具有灵敏、快速和较高的特异性,用于定量分析人血清IgG,结果满意。  相似文献   

14.
采用改进的一步还原法合成了多种海胆状金纳米粒子,并对它们的表面增强喇曼散射特性与其表面形貌的关系进行了实验研究.实验表明,合成的海胆状金纳米粒子的直径及表面的尖刺大小可以通过改变加入到氯金酸溶液中的硝酸银的量来调节.当加入到氯金酸溶液中的硝酸银为1μL时,合成的海胆状金纳米粒子的直径最小而尖刺最长.同时测量的紫外-可见-近红外吸收光谱表明,海胆状金纳米粒子的局域表面等离子体共振带会随着加入到氯金酸溶液中的硝酸银量的增加而变宽.此外,通过喇曼标记分子对巯基苯甲酸(4MBA)的喇曼光谱测量发现,较小直径和较长尖刺的海胆状金纳米粒子具有更强的表面增强喇曼散射活性.  相似文献   

15.
采用改进的一步还原法合成了多种海胆状金纳米粒子,并对它们的表面增强喇曼散射特性与其表面形貌的关系进行了实验研究.实验表明,合成的海胆状金纳米粒子的直径及表面的尖刺大小可以通过改变加入到氯金酸溶液中的硝酸银的量来调节.当加入到氯金酸溶液中的硝酸银为1μL时,合成的海胆状金纳米粒子的直径最小而尖刺最长.同时测量的紫外-可见-近红外吸收光谱表明,海胆状金纳米粒子的局域表面等离子体共振带会随着加入到氯金酸溶液中的硝酸银量的增加而变宽.此外,通过喇曼标记分子对巯基苯甲酸(4MBA)的喇曼光谱测量发现,较小直径和较长尖刺的海胆状金纳米粒子具有更强的表面增强喇曼散射活性.  相似文献   

16.
在硫酸介质中,以硼氢化钠(NaBH4)为还原剂,可将As(Ⅲ)还原为砷化氢(AsH3)气体使其逸出,用Ce(SO4)2-H2SO4-KI混合液做吸收液,在催化剂KI存在下四价铈与AsH3气体反应生成具有共振瑞利散射(RRS)的砷微粒和具有荧光的三价铈,导致体系在370 nm处的RRS信号和在351 nm处的荧光强度增大。在选定条件下,As(Ⅲ)浓度分别在0.006~0.76 mg·L-1和0.006~0.28 mg·L-1范围内与RRS增加值ΔI和荧光强度增大值ΔF351呈线性关系,检出限均为3.0 μg·L-1。据此可建立新的检测As(Ⅲ)的催化RRS和荧光光谱法。  相似文献   

17.
近年来,重金属污染引起了人们广泛关注。传统的重金属检测方法需要依赖大型仪器,预处理繁琐耗时,因此急需发展重金属的快速高灵敏检测技术。基于金纳米颗粒(AuNPs)的比色法传感器具有分析操作简单、灵敏度高、成本低等特点,在环境监测、食品安全以及化学和生物分析领域得到了广泛关注和应用。本文基于纳米金(AuNPs)特性与Fenton反应原理,构建了一种用于水中Cu2+检测的简单快速、高灵敏检测方法。该方法利用Cu2+与抗坏血酸钠(sodium ascorbate,SA)发生Fenton反应,生成具有强氧化性的羟基自由基(·OH),·OH将附着在纳米金表面的单链DNA(ssDNA)裂解,使得金纳米粒子失去保护,容易在一定的盐浓度下发生聚集,从而引起吸光度值的变化。实验结果表明,最优的反应条件为pH 7.9,11mg·L-1 ssDNA,8mmol·L-1 SA以及70mmol·L-1 NaCl,金纳米粒子在700和525nm处的吸光度比值(A700/A525)与Cu2+浓度成线性关系。该方法对Cu2+检测线性范围为0.1~10.0μmol·L-1,检出限为24nmol·L-1(3σ)。对饮用水,自来水及湖水的Cu2+加标回收率可以达到87%~120%,表明该方法能够用于实际水样的Cu2+检测。  相似文献   

18.
全氟辛烷磺酸(perfluorooctanesulfonate,PFOS)具有遗传毒性、生物蓄积性和持久性,且难以降解,因此对其进行分析研究具有十分重要的意义。实验发现,PFOS能使巯基乙胺包被的正电金纳米粒子发生聚集,引起体系吸收信号及颜色改变,据此建立了检测PFOS的紫外-可见分光光度法及比色法。线性方程为A=-0.346+0.049c,相关系数为0.992 4,线性范围0.8~8.0 μmol·L-1,检出限为80 nmol·L-1。研究表明:金纳米粒子在524 nm有特征吸收峰,在650 nm处有较宽吸收峰,PFOS的加入会使金纳米粒子524 nm吸收峰降低,650 nm吸收峰增强,随着PFOS浓度增大,体系颜色由酒红色向红紫色变化。表征了体系的扫描电镜显微成像(SEM)及紫外吸收光谱,考察了金纳米粒子的聚集情况,实验缓冲体系选用pH 5.0的HAc-NaAc缓冲溶液。本方法具有简单、快速等特点,可通过肉眼观察颜色变化来实现对环境污染物PFOS的检测。本方法用于实际水样中PFOS的检测,RSD≤4.4%。  相似文献   

19.
全氟辛烷磺酸(perfluorooctanesulfonate, PFOS)具有遗传毒性、生物蓄积性和持久性, 且难以降解, 因此对其进行分析研究具有十分重要的意义。实验发现, PFOS能使巯基乙胺包被的正电金纳米粒子发生聚集, 引起体系吸收信号及颜色改变, 据此建立了检测PFOS的紫外-可见分光光度法及比色法。线性方程为A=-0.346+0.049c, 相关系数为0.992 4, 线性范围0.8~8.0 μmol·L-1, 检出限为80 nmol·L-1。研究表明: 金纳米粒子在524 nm有特征吸收峰, 在650 nm处有较宽吸收峰, PFOS的加入会使金纳米粒子524 nm吸收峰降低, 650 nm吸收峰增强, 随着PFOS浓度增大, 体系颜色由酒红色向红紫色变化。表征了体系的扫描电镜显微成像(SEM)及紫外吸收光谱, 考察了金纳米粒子的聚集情况, 实验缓冲体系选用pH 5.0的HAc-NaAc缓冲溶液。本方法具有简单、快速等特点, 可通过肉眼观察颜色变化来实现对环境污染物PFOS的检测。本方法用于实际水样中PFOS的检测, RSD≤4.4%。  相似文献   

20.
液相纳米硒微粒的性质及其共振瑞利散射光谱研究   总被引:3,自引:3,他引:0  
常温常压下,在0.24 mol·L-1的盐酸介质中,二氧化硒与过量的抗坏血酸(Vc)作用,生成单质硒Se(0),获得含有纳米硒微粒的均匀溶液;采用透射电镜和激光散射技术,测出Se(0)以26~243 nm的球形聚集状态存在,并在470 nm处有最强的共振瑞利散射(RRS),在入射波长2倍和1/2处分别有二级散射(SOS)和倍频散射(MFS),其共振瑞利散射强度ΔI470与Se(Ⅳ)的浓度在2.82×10-9~5.64×10-6 g·mL-1范围内呈线性关系,相关系数为0.997。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号