首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在60℃水浴条件下,过氧化氢(H_2O_2)还原氯金酸生成金纳米粒子反应进行缓慢,加入掺钙碳点(CD)做催化剂后,反应加快。体系中生成的金纳米粒子增多,显示出较强的共振瑞利散射效应(RRS)效应。在加入焦性锑酸钾(Coke antimony potassium,CAP)配体后,CD被配体包裹,抑制其催化作用。当溶液中Na~+存在时,形成Na~+-CAP复合物,使CD从CAP表面脱附,此时CD得到释放恢复其催化作用。且随着Na~+浓度增大,体系RRS信号线性增强,当Na~+浓度在1.72~21.5μmol·L~(-1)范围内,其ΔI_(375nm)值与Na~+浓度呈良好的线性关系,线性方程为ΔI_(375nm)=105.06x-19.761,线性相关系数为0.969 8,检测限为0.096μmol·L~(-1)据此,建立了一种检测Na~+的CD催化RRS新方法。  相似文献   

2.
在60℃水浴条件下,过氧化氢(H_2O_2)还原HAuCl_4生成金纳米溶胶反应缓慢,加入氧化石墨烯纳米带(GONR)等纳米酶催化剂后,反应加快。当有丁二酮肟(DMG)配体存在时,DMG吸附在GONRs表面,导致GONR的催化作用减弱;而当溶液中存在Ni~(2+)时,形成Ni(DMG)2复合物,使DMG从GONRs表面脱附,此时GONRs得到释放,使得从而GONRs催化效应活化,催化作用增强。随着Ni~(2+)浓度的增加,脱附的GONRs越多,催化H_2O_2-HAuCl_4反应加快,体系生成的金纳米粒子增多,体系的RRS信号增强,当Ni~(2+)浓度在0.07~0.98μmol·L~(-1)浓度范围内,ΔI_(540nm)与Ni~(2+)浓度呈良好的线性关系,线性方程为ΔI_(540nm)=729.31c+32.049,线性相关系数R~2=0.991 4,检测限为0.028μmol·L~(-1)。  相似文献   

3.
在钾适配体(ssDNA)探针存在时,ssDNA吸附在纳米银表面,导致纳米银的催化作用弱,而当溶液中存在钾离子时,形成钾离子-ssDNA复合物,使ssDNA从纳米银表面脱附,此时纳米银得到释放,从而纳米银催化作用增强。随着钾离子浓度的增加,脱附的银纳米粒子越多,催化H_2O_2还原HAuCl_4反应加快,随着钾离子加入量的增大,催化反应速率随之显著增强,生成的金纳米溶胶具有较高的共振瑞利散射(RRS)效应,导致体系在300nm处的RRS强度线性增强。钾离子浓度在0~1.5μmol·L~(-1)范围内,于300nm处的RRS强度增强值ΔI呈良好的线性关系。据此,可建立一种间接检测钾离子的RRS方法。  相似文献   

4.
在70℃水浴条件下,柠檬酸三钠(TCA)还原HAuCl_4反应进行缓慢,加入石墨烯量子点(GQDs)作催化剂,反应加快。增大GQDs的加入量,反应随之显著增强,体系中生成的金纳米粒子增多,产生较高的共振瑞利散射(RRS)强度。在加入BaCl_2配体后,GQDs表面被BaCl_2包裹,抑制了GQDs的催化作用;当溶液中硫酸根离子(SO_4~(2-))存在时,生成BaSO_4沉淀,GQDs从BaCl_2表面脱离,此时GQDs恢复其催化作用,并随着SO_4~(2-)浓度的增加,GQDs的脱附量增多,体系的反应速度加快,催化反应随之增强,RRS信号线性增强。信号增强值与SO_4~(2-)在0.067~1.67μmol·L~(-1)范围内呈良好线性关系,检测限为0.041μmol·L~(-1),线性方程为ΔI_(570nm)=93.3c+0.4。  相似文献   

5.
L-半胱氨酸具有还原氯金酸诱导合成金纳米带(AuNBs)的作用,但制备所需时间较长。本文研究了50℃水浴下条件下,用纳米金(AuNPs)等纳米粒子催化制备金纳米粒子,可以缩短反应时间至3~5min。并对新制成的金纳米粒子(Au/AuNPs)的吸收光谱,共振瑞利散射(RRS)光谱和表面增强拉曼(SERS)光谱进行了研究。  相似文献   

6.
一个检测痕量汞离子的鱼精DNA修饰纳米金共振散射光谱法   总被引:2,自引:0,他引:2  
在pH 7.0 Tris-HCl缓冲溶液及0.017 mol.L-1NaCl介质中,鲱鱼精DNA与10 nm的金纳米粒子形成较稳定的结合物使得金纳米粒子不聚集,体系的散射信号较弱。当有Hg2+存在时,DNA与Hg2+形成更稳定的DNA-Hg2+结合物,金纳米粒子聚集导致572 nm处的共振散射峰增强。在3.87μg.mL-1金纳米粒子-11.7μg.mL-1DNA-pH 7.0~17 mmol.L-1NaCl条件下,Hg2+浓度c在3.3~3 333.3 nmol.L-1范围内与572 nm处的共振散射强度增强值ΔI572 nm成良好线性关系,其回归方程、相关系数、检出限分别为ΔI572 nm=0.019c+5.0,0.999 1,2.5 nmol.L-1。该法用于水样分析,结果与冷原子吸收光谱法一致,相对标准偏差为5.1%。  相似文献   

7.
过氧化氢(H_2O_2)是活性氧类的主要标志物,它与多种疾病如神经退行性疾病密切相关。本文设计了一种检测细胞内过氧化氢的荧光过氧化氢酶纳米传感器。这种纳米传感器由含多聚赖氨酸、辣根过氧化物酶的生物相容性外壳和含有氧探针的多孔聚合物基质的氧传感核组成。辣根过氧化物酶(HRP)催化H_2O_2生成氧,进而通过荧光氧气探针进行探测。该酶纳米传感器的流体动力学尺寸约为270 nm,zeta电位为-18 mV,具有良好的生物相容性。它的荧光比率和时间分辨荧光均对H_2O_2高度敏感。此外,该纳米传感器可以被活细胞有效地摄取,从而可以用TRF方式灵敏地检测细胞内的H_2O_2浓度。结果表明,本实验制备的酶纳米传感器有望进一步用于监测H_2O_2相关的细胞生化反应,如氧化应激。  相似文献   

8.
以pH 4.0HAC-NaAC缓冲溶液为介质,用硼酸碘化钾溶液(BKI)作为O3吸收剂。O3将I-氧化生成为I2,溶液中过量的I-与I2又可形成I-3,有阳离子表面活性剂(CS)如氯代十六烷基吡啶(CPCl),溴代十四烷基吡啶(TPB),十六烷基三甲基溴化铵(CTMAB),十四烷基苄基二甲基氯化铵(TDMAC)存在时,CS与I-3形成稳定的(CS-I3)n缔合微粒,在470nm处有一个较强的共振瑞利散射峰(RRS),随着O3浓度的增大,体系中的I-3增多,I-3与CS形成的(CS-I3)n缔合微粒越多,470nm处的RRS强度I增强,O3浓度与其增强值ΔI成线性关系,各体系的线性范围分别为15~50,50~100,5~25,1~50μmol·L-1,回归方程分别为ΔI=8.81c-4.01,ΔI=5.44c-3.11,ΔI=15.39c-1.55,ΔI=16.88c+0.51,检出限分别为4.9,12,2.85,0.56μmol·L-1 O3。实验考察了共存物质的影响,当O3浓度为2.5×10-6 mol·L-1,相对误差在±10%内时,4.0×10-5 mol·L-1 Hg2+,8.7×10-5 mol·L-1 Fe3+,5.0×10-5 mol·L-1 Ca2+,2.5×10-5mol·L-1 Zn2+和Cu2+,2.8×10-6 mol·L-1 Pb2+和Cr3+,4.2×10-5 mol·L-1 Mg2+,Mn2+和Ba2+对体系的测定无干扰。说明该方法具有良好的选择性。选用TDMAC体系检测空气中的O3,结果令人满意。采用激光散射技术研究了(TDMAC-I3)n缔合微粒体系的粒径分布。当通入O3后,过量KI与O3反应形成I-3,I-3与TDMAC反应生成(TDMAC-I3)n缔合微粒,其粒径集中分布在1 106~3 091nm之间。  相似文献   

9.
在pH7.0的Na2HPO4-NaH2PO4缓冲溶液中,纳米金与适配体(aptamer)结合形成较稳定的aptamer-Au复合物,且不被NaCl聚集。在85℃水浴中,K+与aptamer作用后折叠形成稳定的G-四分体结构复合物且释放出纳米金。在高浓度盐作用下,纳米金聚集成较大粒径的纳米金颗粒,导致体系563nm处的共振散射强度增大,其平均粒径为120nm。文章研究了K+ -随机单链DNA1(ssDNA1)-纳米金、K+ -ssD-NA2-纳米金和K+ -aptamer-纳米金体系的共振散射光谱特性,并用圆二色光谱技术证明了核酸适配体结构的变化。考察了pH、NaCl浓度、aptamer浓度、纳米金用量以及Cu2+、Mg2+、Pb2+、Ca2+、Al3+、Zn2+Fe3+等常见重金属离子等对测定K+的影响,结果显示这些离子不干扰测定,该法具有较好的选择性。在选定条件下,K+浓度在0.67~3350μmol·L-1范围与共振散射峰值ΔI呈良好的线性关系,回归方程、相关系数、检出限分别为ΔI=0.167c-0.7,0.9932,0.3μmol·L-1 K+。该法用于血清样品分析,结果与离子选择电极法一致。  相似文献   

10.
基于酸性介质的条件下,银纳米粒子(AgNPs)与探针分子Rh6G会产生较强的表面增强拉曼散射(Surface enhanced Raman spectroscope,SERS)效应,当溶液中加入Mo(Ⅵ)时,Rh6G与Mo(Ⅵ)发生络合反应形成一个Rh6G-Mo(Ⅵ)复合物,随着Mo(Ⅵ)浓度的增大,游离的Rh6G减少,使得体系的SERS效应降低,当Mo(Ⅵ)浓度在0.02~0.8μg·mL~(-1)范围内,其ΔI_(1 509cm~(-1))值Mo(Ⅵ)浓度呈良好的线性关系,线性方程为ΔI_(1 509cm~(-1))=542.09c+175.24,线性相关系数为0.995 6,检测限为0.008μg·mL~(-1),据此可建立一种Mo(Ⅵ)-Rh6G-AgNPs体系的SERS分析新方法。  相似文献   

11.
血红蛋白(Hb)是一种含铁元素的金属蛋白质,人体内血红蛋白含量过高或过低都会导致疾病。本文使用11-巯基十一烷酸与甲硫氨酸合成双配体修饰的金纳米簇,设计了一种用于荧光法检测血红蛋白的纳米传感器。实验结果证明在过氧化氢和血红蛋白分别存在的情况下,金纳米簇的荧光均可以发生微弱的猝灭。但当两者同时加入到金纳米簇溶液中时,纳米簇的荧光强度降低程度大大增强。猝灭机理可能是基于血红蛋白催化过氧化氢生成氧化性更强的羟基自由基,破坏Au—S键。在优化条件下,荧光强度与血红蛋白浓度在0.08~8.0mol·L~(-1)范围内呈良好的线性关系,检出限为0.047mol·L~(-1)(S/N=3)。该方法成功地用于血液样本中血红蛋白的定量分析。  相似文献   

12.
近年来,重金属污染引起了人们广泛关注。传统的重金属检测方法需要依赖大型仪器,预处理繁琐耗时,因此急需发展重金属的快速高灵敏检测技术。基于金纳米颗粒(AuNPs)的比色法传感器具有分析操作简单、灵敏度高、成本低等特点,在环境监测、食品安全以及化学和生物分析领域得到了广泛关注和应用。本文基于纳米金(AuNPs)特性与Fenton反应原理,构建了一种用于水中Cu2+检测的简单快速、高灵敏检测方法。该方法利用Cu2+与抗坏血酸钠(sodium ascorbate,SA)发生Fenton反应,生成具有强氧化性的羟基自由基(·OH),·OH将附着在纳米金表面的单链DNA(ssDNA)裂解,使得金纳米粒子失去保护,容易在一定的盐浓度下发生聚集,从而引起吸光度值的变化。实验结果表明,最优的反应条件为pH 7.9,11mg·L-1 ssDNA,8mmol·L-1 SA以及70mmol·L-1 NaCl,金纳米粒子在700和525nm处的吸光度比值(A700/A525)与Cu2+浓度成线性关系。该方法对Cu2+检测线性范围为0.1~10.0μmol·L-1,检出限为24nmol·L-1(3σ)。对饮用水,自来水及湖水的Cu2+加标回收率可以达到87%~120%,表明该方法能够用于实际水样的Cu2+检测。  相似文献   

13.
以三乙醇胺为还原剂,乙二醇溶液为反应溶液,在红外光波条件下制备了稳定性较好的金纳米溶胶。并对新制成的金纳米粒子的紫外可见吸收、共振瑞利散射(RRS)、表面增强拉曼散射(SERS)对其进行了研究。  相似文献   

14.
在HAc-NaAc缓冲溶液中,葡萄糖氧化酶(GOD)催化葡萄糖与溶解氧反应生成H2O2;辣根过氧化物酶(HRP)催化H2O2氧化过量的KI生成I-3, I-3分别与罗丹明S(RhS), 罗丹明6G(Rh6G), 丁基罗丹明B(b-RhB), 罗丹明B(RhB)结合形成缔合物微粒,使得4体系分别在556,556,584和584 nm处的荧光峰强度线性降低。在最佳条件下,葡萄糖的浓度分别在0.083~9.99,0.17~8.33,0. 33~8.33,0. 33~9.99 μmol·L-1范围内与RhS,Rh6G,b-RhB,RhB四体系的荧光猝灭强度呈良好的线性关系,其回归方程、相关系数、检出限分别为ΔF=40.0c+ 3.0,ΔF=23.9c+8.1,ΔF=25.6c+4.2,ΔF=18.4c+ 0.8;0.995 1,0.997 3,0.996 0,0.996 5;0.059,0.17,0.21,0.16 μmol·L-1。RhS催化体系最灵敏、稳定,将其用于人血清中葡萄糖的检测,结果满意。  相似文献   

15.
在硫酸介质中,以硼氢化钠(NaBH4)为还原剂,可将As(Ⅲ)还原为砷化氢(AsH3)气体使其逸出,用Ce(SO4)2-H2SO4-KI混合液做吸收液,在催化剂KI存在下四价铈与AsH3气体反应生成具有共振瑞利散射(RRS)的砷微粒和具有荧光的三价铈,导致体系在370 nm处的RRS信号和在351 nm处的荧光强度增大。在选定条件下,As(Ⅲ)浓度分别在0.006~0.76 mg·L-1和0.006~0.28 mg·L-1范围内与RRS增加值ΔI和荧光强度增大值ΔF351呈线性关系,检出限均为3.0 μg·L-1。据此可建立新的检测As(Ⅲ)的催化RRS和荧光光谱法。  相似文献   

16.
高灵敏的由柠檬酸钠稳定的金纳米粒子通过共振瑞利散射法(RRS)和比色法测定普萘洛尔。利用柠檬酸钠作为还原剂,成功合成了表面带负电的金纳米粒子。在pH 4.6的BR缓冲溶液中,普萘洛尔由于质子化带正电,因此金纳米粒子与普萘洛尔可以通过静电作用结合,从而使金纳米粒子聚集,导致体系的RRS信号增强,并且伴随溶液的颜色由酒红色变成紫色。一种高灵敏的RRS和比色法因此建立起来用于测定普萘洛尔,两种方法对应的线性范围分别为0.2–5.2和0.4–4.4μg·mL-1。但是将该方法用于其他洛尔类药物(比索洛尔、阿替洛尔、美托洛尔和阿罗洛尔)的测定,发现这些洛尔类药物对柠檬酸钠修饰的金纳米粒子探针没有如普萘洛尔般的响应,因此可以用此法识别洛尔类药物混合物中的普萘洛尔。  相似文献   

17.
利用密度泛函理论(DFT)计算的方法,对O_2,H_2O单独吸附和共吸附在Au_(38)团簇上的吸附性质进行了结构,能量和电子分析.计算结果表明,O_2倾向于吸附在edge位,H_2O则倾向于吸附在top位.Au(100)表面较之Au(111)表面更有利于O_2,H_2O的吸附,这与实验结果相符合.H_2O和O_2共吸附研究表明,H_2O的存在促进了O_2的吸附.Mulliken和分态密度(PDOS)分析得出:在共吸附中,H_2O将部分电子转移给了O_2,促进了O_2的活化与解离,并生成了类似H_2O_2的中间态,从而为催化氧化反应提供了O活性物种.  相似文献   

18.
在室温搅拌条件下,以柠檬酸三钠,NaBH_4还原剂还原AgNO_3制备稳定的黄色球状纳米银溶胶(AgNps)。维多利亚蓝B(VBB)分子探针吸附到纳米银溶胶(AgNps)表面在1 616cm~(-1)处产生强的SERS峰,ClO_2加入后氧化VBB导致体系的SERS信号强度降低。SERS信号降低值与ClO_2浓度在0.013~0.625mg·L~(-1)范围内呈良好线性关系,检出限为0.01mg·L~(-1),线性回归方程为ΔI_(1 616cm~(-1))=4 728.1c+147.09。该方法操作简单,灵敏,有望应用于环境水样中的ClO_2分析。  相似文献   

19.
在pH 7.0HEPES(4-羟乙基哌嗪乙磺酸)缓冲溶液中和0.19mol.L-1 NaCl存在下,单链底物DNA(SS)和酶链DNA(ES)在80℃杂交形成双链DNA(dsDNA)。Cu2+可切割dsDNA中的底物链释放出单链DNA(ssDNA),此ssDNA与金纳米粒子(NG)作用形成NGssDNA结合物不被NaCl聚集,而未保护的NG聚集形成较大粒径的聚集体(NGA),在627nm处有一个较强的共振瑞利散射峰。随着Cu2+浓度的增大,该共振瑞利散射峰降低,其降低值ΔI与Cu2+浓度在15~1 250nmol.L-1范围呈线性关系,其回归方程为ΔI=0.17c-2.3,线性相关系数为0.989 5,检出限为8nmol.L-1。据此建立了一个高灵敏、高选择性、简便测定Cu2+的共振瑞利散射光谱分析法。该法用于水样中Cu2+的检测,结果满意。  相似文献   

20.
在碱性环境及60℃水浴条件下,氧化石墨烯(GO)催化葡萄糖还原Fehling试剂生成了氧化氧化亚铜纳米立方体/石墨烯(GO/Cu2ONPs)复合纳米微粒。对GO/Cu2ONPs进行了TEM、EDS表征,表明Cu2ONPs在生长过程中是附着在GO上形成的。共振瑞利散射(RRS)光谱研究显示GO/Cu2ONPs在290,360和525nm处有3个RRS峰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号