首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 120 毫秒
1.
利用碳二亚胺(EDC)将抗-转铁蛋白化学偶联到已修饰了半胱胺的纳米金表面,制备了抗-转铁蛋白-纳米金免疫探针,应用共振瑞利散射光谱,紫外-可见吸收光谱,透射电镜和激光散射等方法对其进行了表征。所制备的纳米探针具有良好的免疫活性。由于抗-转铁蛋白对转铁蛋白抗原具有特异性识别能力,借助免疫纳米探针在470 nm处共振瑞利散射信号的放大作用,对转铁蛋白抗原进行特异性识别及免疫分析。转铁蛋白浓度在0.85~33.9×10-10mol·L-1范围内,470 nm处共振瑞利散射相对强度与转铁蛋白浓度呈良好的线性关系,检测下限为8.5×10-11mol·L-1。  相似文献   

2.
在阴离子表面活性剂十二烷基硫酸钠(SDS)和硫代乙酰胺(TAA)存在下,Ag 和S2-反应生成较稳定的Ag2S纳米微粒。它在470nm处产生1个较强的荧光峰,在470nm处产生1个共振散射峰。TAA和Ag 浓度对体系荧光强度的影响与此两种物质浓度对共振散射强度的影响一致,随着Ag 浓度(0~8·0×10-5mol·L-1)增大荧光和共振散射光强度均线性增大。实验结果表明,荧光与共振散射之间存在相关性。此荧光为液相Ag2S纳米微粒产生的固液界面荧光。  相似文献   

3.
在 0 0 2mol·L-1HCl介质中 ,红色 [PtI6]2 -配合物离子与奎宁作用生成紫红色PtI6 奎宁缔合微粒 ,在 310 ,4 0 0 ,4 70 ,6 10nm处产生 4个瑞利散射峰 ;在 35 0~ 70 0nm波长范围的吸光度值均增大 ,4 5 0nm荧光峰猝灭。在选定条件下 ,奎宁浓度在 0~ 4 0× 10 -6mol·L-1范围内与A62 0nm成正比 ,摩尔吸光系数ε62 0nm为 1 31× 10 4L·mol-1·cm-1。实验结果表明 ,奎宁缔合微粒的形成是导致瑞利散射信号增强和荧光猝灭的根本原因 ,而缔合微粒的颜色是共振散射所致。  相似文献   

4.
基于AgI2-缔合微粒共振散射效应测定阳离子表面活性剂   总被引:2,自引:2,他引:0  
在pH 3.5 NaAc-HCl介质中,Ag 与过量的I-形成可溶性AgOI2-;当十六烷基三甲基溴化铵(CT-MAB)与AgI2-共存时形成粒径为700 nm的(CTMA-AgI2)n缔合微粒,在360 nm处产生一个共振散射峰,在470 m处产生一同步散射峰.CTMAB浓度cCTMAB在2.0~50.0×10-7mol·L-1范围内与散射光强度I360nm呈线性关系,回归方程为I360nm=2.03×107 cCTMAB 0.48,相关系数r为0.998 5,检出限为8.0×10-8mol·L-1.据此建立了一个测定阳离子表面活性剂含量的共振散射光谱法,用于水样分析,结果满意.共振散射光谱和激光散射研究表明,CTMAB 与AgI2-可通过静电力形成疏水性的CTMA-AgI2缔合物分子,该缔合物分子自动聚集形成稳定的(CTMA-AgI2)n缔合微粒.由于该缔合微粒仅在360 nm处产生共振散射效应,故体系呈乳白色.  相似文献   

5.
纳米银胶的光化学制备及其共振散射光谱研究   总被引:28,自引:1,他引:27  
采用紫外光化学法制备了银胶 ,它的最强共振散射峰在 470nm处 ,最大吸收峰为 412 2nm。在共振散射波长 470nm处 ,银浓度在 0 45 6~ 9 12 μg·mL-1范围内与所得银胶的共振散射光强度呈良好线性关系。首次采用光化学法合成了稳定的蓝色银胶 ,其最强共振散射峰位于 470nm ,在 397 4和 6 2 3 4nm处有两个较强的吸收峰。  相似文献   

6.
硼是一种生命体必需的微量元素,但过量的硼对人体以及动植物有害。建立一种高灵敏度,高选择性以及简便的硼检测方法,对于环境和人类健康都具有很重要的意义。本研究的目的是建立一种简便,灵敏,选择性测定硼的金纳米棒等离子体共振瑞利散射能量转移光谱新方法。直径为12 nm, 长度为37 nm的金纳米棒采用种子生长法制备。在pH 5.6的NH4Ac-HAc的缓冲溶液中和甲亚胺-H存在下,金纳米棒在404 nm处产生较强的共振瑞利散射峰。当体系中存在硼酸时,硼酸与甲亚胺-H形成硼酸-甲亚胺-H配合物。作为散射受体的配合物与散射共振能量转移的给体纳金米棒靠近时,发生瑞利散射共振能量转移,导致瑞利散射信号猝灭。随着硼酸浓度的增加,形成的配合物增加,金纳米棒转移给黄色配合物的散射光能量增大,导致体系404 nm处的瑞利散射强度线性降低。其降低值ΔI404 nm与硼的浓度在10~750 ng·mL-1范围内呈良好的线性关系。考察了共存物质对该法测定2.3×10-7 mol·L-1 B的干扰情况。结果表明该法具有较高的选择性,即4×10-4 mol·L-1的Mn2+,Cd2+,Zn2+,Bi3+,Na+,Al3+,葡萄糖,Hg2+,IO-3,F-,SO2-4,SiO2-3,NO-3,ClO-4,过氧化氢等对硼的测定无干扰。据此建立了一个灵敏度高,选择性好,简便快速检测硼的瑞利散射共振能量转移新方法。  相似文献   

7.
以pH 4.0HAC-NaAC缓冲溶液为介质,用硼酸碘化钾溶液(BKI)作为O3吸收剂。O3将I-氧化生成为I2,溶液中过量的I-与I2又可形成I-3,有阳离子表面活性剂(CS)如氯代十六烷基吡啶(CPCl),溴代十四烷基吡啶(TPB),十六烷基三甲基溴化铵(CTMAB),十四烷基苄基二甲基氯化铵(TDMAC)存在时,CS与I-3形成稳定的(CS-I3)n缔合微粒,在470nm处有一个较强的共振瑞利散射峰(RRS),随着O3浓度的增大,体系中的I-3增多,I-3与CS形成的(CS-I3)n缔合微粒越多,470nm处的RRS强度I增强,O3浓度与其增强值ΔI成线性关系,各体系的线性范围分别为15~50,50~100,5~25,1~50μmol·L-1,回归方程分别为ΔI=8.81c-4.01,ΔI=5.44c-3.11,ΔI=15.39c-1.55,ΔI=16.88c+0.51,检出限分别为4.9,12,2.85,0.56μmol·L-1 O3。实验考察了共存物质的影响,当O3浓度为2.5×10-6 mol·L-1,相对误差在±10%内时,4.0×10-5 mol·L-1 Hg2+,8.7×10-5 mol·L-1 Fe3+,5.0×10-5 mol·L-1 Ca2+,2.5×10-5mol·L-1 Zn2+和Cu2+,2.8×10-6 mol·L-1 Pb2+和Cr3+,4.2×10-5 mol·L-1 Mg2+,Mn2+和Ba2+对体系的测定无干扰。说明该方法具有良好的选择性。选用TDMAC体系检测空气中的O3,结果令人满意。采用激光散射技术研究了(TDMAC-I3)n缔合微粒体系的粒径分布。当通入O3后,过量KI与O3反应形成I-3,I-3与TDMAC反应生成(TDMAC-I3)n缔合微粒,其粒径集中分布在1 106~3 091nm之间。  相似文献   

8.
十二烷基苯磺酸钠共振散射光谱法测定木瓜蛋白酶活力   总被引:1,自引:0,他引:1  
在pH值6.5的磷酸盐缓冲溶液中,十二烷基苯磺酸钠(SDBS)与酪蛋白(Casein)形成缔合物微粒,在470,360,400,420和520 nm产生5个瑞利散射峰。在选定条件下,木瓜蛋白酶(Papain)可水解酪蛋白(Casein),加SDBS可中止酶催化反应并与未反应的酪蛋白底物结合形成缔合物微粒。随着Papain浓度的增大,470 nm处的共振散射峰强度降低。Papain的酶活力在0.048~4.8 USP·mL-1范围内与ΔI470 nm呈现良好的线性关系。其线性回归方程为ΔISDBS=1.972c+2.31,相关系数分别为r=0.999 9,检测限为0.020 USP·mL-1。该法用于嫩肉粉中木瓜蛋白酶活力测定,结果令人满意。  相似文献   

9.
免疫球蛋白G的免疫共振散射光谱分析   总被引:6,自引:0,他引:6  
在pH 7.0 Tris-HCl缓冲溶液中及聚乙二醇-20000存在下,羊抗兔IgG与兔IgG的免疫复合物可聚集形成疏水的免疫复合物微粒,在330, 400, 520 nm处有三个共振散射峰,在470 nm有一个同步散射峰。IgG浓度在1.33~133.3 μg·mL-1范围内与470 nm处的散射强度呈线性。借此用于定量分析血清IgG, 结果满意。方法检出限为0.99 μg·mL-1。  相似文献   

10.
在Britton-Robinson缓冲介质(pH 9.0~10.5)中,单独的乙基紫与葡聚糖硫酸钠的共振瑞利散射都非常微弱,当二者反应形成结合物时将导致溶液共振瑞利散射明显增强,并产生新的共振瑞利散射光谱,其3个明显的散射峰分别位于348.0,509.8和680.0 nm处,且均可作为测定波长。以ΔI值最高且线性关系较好的509.8 nm作为测定波长时,葡聚糖硫酸钠在0.005~2.4 μg·mL-1范围内与共振瑞利散射强度成线性关系,检出限为3.25 ng·mL-1。研究了葡聚糖硫酸钠-乙基紫体系的紫外-可见吸收光谱,讨论了溶液酸度、乙基紫浓度、反应时间、温度、离子强度等实验条件的影响,考察了共存物质对该体系测定葡聚糖硫酸钠的影响。实验表明该方法有高的灵敏度和较好的选择性,应用于合成样品的测定。  相似文献   

11.
在 0 0 1mol·L-1HCl介质中 ,[AuI4]-在 35 0nm处有一吸收峰 ;当十六烷基三甲基溴化铵(CTMAB)与 [AuI4]-共存时体系呈红紫色 ,在 5 2 0nm处产生一新的吸收峰。CTMAB浓度在 0~ 7 0× 10 -5mol·L-1范围内符合比耳定律 ,回归方程为A52 0nm =0 989× 10 4cCTMAB +0 0 138,相关系数R为 0 9997,摩尔吸光系数ε为 1 0 5 8× 10 4L·mol-1·cm-1,据此建立了一种测定阳离子表面活性剂含量的分光光度新方法 ,并用于合成样品和新洁尔净样品中阳离子表面活性剂测定 ,结果满意。共振散射光谱研究表明 ,[CTMAB]+ 与 [AuI4]-可通过静电引力作用形成疏水性的 (AuI4 CTMAB)缔合物分子 ,并进一步聚集形成稳定的 (AuI4 CTMAB) n 缔合纳米微粒。由于该缔合纳米微粒在 5 80和 4 70nm处产生共振散射效应 ,故体系呈红紫色。  相似文献   

12.
共振瑞利散射光谱法测定人体血浆和尿液中的加替沙星   总被引:1,自引:0,他引:1  
韩权  王媚  田丽  杨娜 《光谱实验室》2010,27(6):2146-2150
提出了共振瑞利散射光谱法测定加替沙星的新方法。在pH5.2—5.6的Britton-Robinson缓冲溶液中,加替沙星(Gatifloxacin,GTFX)与钴(Ⅱ)能形成阳离子配合物,它可进一步与酸性染料刚果红(CR)阴离子反应形成2:1:1(GTFX:Co~(2+):CR)的三元离子缔合物,使共振瑞利散射(RRS)急剧增强,其2个散射峰分别位于382nm和560nm处。在382nm处,加替沙星的浓度在0—5.26μg·mL~(-1)范围内,与RRS强度有良好的线性关系,检出限(3σ)为7.5ng·mL~(-1)。此方法简便、快速,且具有良好的选择性,用于片剂、尿液和血浆中加替沙星的测定,其回收率在96.1%—103.6%。  相似文献   

13.
IgA免疫复合物微粒的共振散射光谱研究及其分析应用   总被引:1,自引:0,他引:1  
在pH 6.2的Na2HPO4-柠檬酸缓冲溶液中及聚乙二醇4 000存在下,免疫球蛋白A(IgA)与羊抗人免疫球蛋白A通过库力引力、范德华力、氢键结合力、疏水等作用力发生特异性结合形成抗原-抗体免疫复合物微粒。激光散射法测得该微粒的平均粒径约为1 100 nm;而且该微粒在340,390,420,450,470,520 nm有6个共振散射峰。考察了pH值、不同分子量聚乙二醇、羊抗人IgA血清用量、温度及反应时间对共振散射光谱测定IgA的影响。在最佳实验条件下,IgA浓度在0.133~4.67 μg·mL-1范围内与340和470 nm处的共振散射强度均呈线性关系,其回归方程分别为ΔI340 nm=18.61 cIgA+3.19,ΔI470 nm=18.57 cIgA+6.51,相关系数分别为0.998 5和0.998 7,检出限分别为0.068和0.072 μg·mL-1。该法用于人血清IgA的测定,相对标准偏差在2.2%~4.2%,并与免疫比浊法测定结果作线性回归分析,其斜率、截距和相关系数分别为1.064,-0.213和0.929 9,结果令人满意。  相似文献   

14.
在pH 6.6的磷酸盐缓冲溶液中,荧光桃红在520 nm有一个吸收峰,在560 nm处有一个荧光峰。当有小檗碱存在时,荧光桃红与小檗碱可形成稳定的紫红色缔合微粒。其最大吸收波长在560 nm,小檗碱浓度(c)在6.65×10-7~7.71×10-5mol·L-1范围内符合比尔定律,回归方程为A=1.051×104c+0.008 6,相关系数为0.996 9, 摩尔吸光系数为2.21×104 L·mol-1·cm-1。荧光桃红-小檗碱体系的光谱特性研究表明,小檗碱与荧光桃红主要通过静电引力形成疏水性的缔合微粒,在385,470,586 nm产生3个共振散射峰,560 nm荧光峰的降低是由于复合微粒形成所致。  相似文献   

15.
氢化物发生-原子荧光光谱法测定植物样品中的硒   总被引:2,自引:0,他引:2  
建立了氢化物发生-原子荧光光谱法测定植物样品中硒的分析方法。研究了试剂及预还原方式对硒原子荧光强度的影响,探讨了共存离子对硒测定的影响和消除方法。在最佳消解条件和测定条件下,硒的线性回归方程为I=139.98c+27.71,线性范围为0~10ng.mL-1,相关系数为1.000 0,检出限为1.45ng.g-1。测定标准物质中硒的回收率为98.9%~101%,其平均值为100%。对灌木枝叶样品中的硒进行分析,其相对标准偏差为0.73%(n=9)。以国家标准物质(GSV-1)为监控样品,测定值与标准值吻合。该方法具有成本低、操作简单和高效分析的优点,并成功用于植物样品中硒的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号