首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Fabrication of SiO_2 microdisk optical resonator   总被引:1,自引:0,他引:1  
The silica microdisk optical resonator which exhibits whispering-gallery-type modes with quality factors of 9.67×10~4 is fabricated with photolithographic techniques.Reactive ion beam etching(RIBE)is used to get the silica disks with photoresist masks on SiO_2/Si made by standard ultraviolet(UV)photolithography, and spontaneous silicon etching by XeF_2 is used to fabricate the silicon micropillars.This fabrication process can control the microcavity geometry,leading to high experiment repeatability and controllable cavity modes.These characteristics are important for many applications in which the microcavity is necessary,such as the quantum gate.  相似文献   

2.
We present a new method in which both positive and negative pulses are used to etch silicon for fabrication of porous silicon (PS) monolayer. The optical thickness and morphology of PS monolayer fabricated with different negative pulse voltages are investigated by means of reflectance spectra, scanning electron microscopy and photoluminescence spectra. It is found that with this method the PS monolayer is thicker and more uniform. The micropores also appear to be more regular than those made by common positive pulse etching. This phenomenon is attributed to the vertical etching effect of the PS monolayer being strengthened while lateral etching process is restrained. The explanation we propose is that negative pulse can help the hydrogen cations (H^+) in the electrolyte move into the micropores of PS monolayer. These H^+ ions combine with the Si atoms on the wall of new-formed micropores, leading to formation of Si-H bonds. The formation of Silt bonds results in a hole depletion layer near the micropore wall surface, which decreases hole density on the surface, preventing the micropore wall from being eroded laterally by F^- anions. Therefore during the positive pulse period the etching reaction occurs exclusively only at the bottom of the micropores where lots of holes are provided by the anode.  相似文献   

3.
二氧化钛(Titatium Dioxide,简称TiO2)晶体在中能重离子辐照时表面会出现肿胀效应, 肿胀高度与入射离子的电子能损和辐照注量有关。 辐照后的TiO2在一定条件下能够被氢氟酸溶液化学蚀刻,化学蚀刻的电子能损阈值为8.2keV/nm,未辐照TiO2呈现几乎零蚀刻率。要达到饱和蚀刻深度,辐照离子的注量必须大于或等于1×1013ions/cm2。采用离子辐照的潜径迹理论分析研究了辐照损伤及对化学蚀刻的影响, 快重离子辐照结合化学蚀刻是制备TiO2微结构的有效方法。 There appears volume swelling on the surface of the irradiated rutile TiO2 crystal and the volume swelling is affected by the ion fluence and the electronic stopping power. To induce adequate irradiation damage for the chemical etching, the irradiation parameters must fulfill some requirement. There is minimum electronic stopping power for the chemical etching of the irradiated region in TiO2 crystal, which is about 8. 2 keV/nm. If the ion fluence is below 1×1013ions/cm2, the saturated etching depth of the irradiated region in TiO2crystal cannot be reached. The irradiation damage based on latent track formation frame and the theoretical linkage to the etching technique is investigated. It is hopeful to fabricate micro and nano scale structurce in rutile TiO2 crystal by using the ion irradiation and chemical etching technique.   相似文献   

4.
何元金  吴文  段晓东 《中国物理》1993,2(7):544-549
In order to develop a low-temperature heat-treatment technique for the prepa-ration of Si substrates to be used in-situ in molecular beam epitaxy (MBE), surface defects of the HF etched and passivated substrates were investegated with a slow positron beam analysis, the analysis system was equipped on-line with the molecu-lar beam epitaxy device. The fraction of positronium (Ps) emission from Si surface at different temperatures was estimated by a "peak-method", after comparing with the reflection high energy electron diffraction patterns, it was concluded that for a HF treated specimen a clean and stable passivated surface suitable to MBE can be obtained by an in-situ low-temperature (about 550℃) treatment. However, the pa-rameters of HF treatment (etching time, HF concentration, etc.) should be precisely adjusted in order to avoid the production of excessive damages on Si surfaces.  相似文献   

5.
Surface and cross-sectional residual stresses of electrochemical etching porous silicon are investigated quantitatively by micro-Raman spectroscopy. The results reveal that a larger tensile residual stress exists on the surface and increase linearly with the porosity. On the other hand, across the depth direction perpendicular to the surface, the tensile residual stress decreases gradually from the surface to regions near the interface between the porous silicon layer and the Si substrate. However, a compressive stress appears at the interface near to the Si substrate for balancing with the tensile stress in the porous silicon layer. The cross-sectional residual stress profile is due to the porosity and lattice mismatch gradients existing in the cross-section and influencing each other.Furthermore, the presented residual stresses of the porous silicon have a close relation with its microstructure.  相似文献   

6.
Several series of Si:H films were fabricated by the very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at different substrate temperatures (T_s) and silane concentration (SC=[SiH_4]/[SiH_4+H_2]%). The results of Raman spectroscopy showed structural evolution of the Si:H films with the variation of T_s and SC. The results of x-ray diffraction (XRD) measurements indicated that T_s also influences the crystal orientation of the Si:H films. The modulation effect of T_s on crystalline volume fraction (X_c) is more evident for the high SC, which shows different trend compared to low SC. In addition, the growth rate of the films also showed a regular change with the variation of SC and T_s. Different samples in the series showed a similar increase in dark conductivity and a decrease in photosensitivity with increasing T_s and decreasing SC. Device-quality microcrystalline silicon materials were deposited at a high growth rate, characterized by relatively low dark conductivity and relatively high photosensitivity in a certain crystalline range. The microcrystalline silicon solar cell with a conversion efficiency of 4.55% has been prepared by VHF-PECVD.  相似文献   

7.
雷耀虎  刘鑫  郭金川  赵志刚  牛憨笨 《中国物理 B》2011,20(4):42901-042901
In order to push the grating-based phase contrast imaging system to be used in hospital and laboratories,this paper designs and develops a novel structure of x-ray scintillator functioning also as an analyser grating,which has been proposed for grating-based x-ray differential phase contrast imaging. According to this design,the scintillator should have a periodical structure in one dimension with the pitch equaling the period of self-image of the phase grating at the Talbot distance,where one half of the pitch is pixellated and is made of x-ray sensitive fluorescent material,such as CsI(Tl),and the remaining part of the pitch is made of x-ray insensitive material,such as silicon. To realize the design,a deep pore array with a high aspect ratio and specially designed grating pattern are successfully manufactured on 5 inch silicon wafer by the photo-assisted electrochemical etching method. The related other problems,such as oxidation-caused geometrical distortion,the filling of CsI(Tl) into deep pores and the removal of inside bubbles,have been overcome. Its pixel size,depth and grating pitch are 3 μm×7.5 μm,150 μm and 3 μm,respectively. The microstructure of the scintillator has been examined microscopically and macroscopically by scanning electron microscope and x-ray resolution chart testing,respectively. The preliminary measurements have shown that the proposed scintillator,also functioning as an analyser grating,has been successfully designed and developed.  相似文献   

8.
By using a graded-index multimode fiber (GI-MMF) with a relatively flat index profile and high refractive index of the fiber core, a microextrinsic fiber-optic Fabry Prot interferometric (MEFPI) strain sensor is fabricated through chemical etching and fusion splicing. Higher reflectance of the microcavity is obtained due to the less-curved inner wall in the center of the fiber core after etching and higher index contrast between the GI-MMF core and air. The maximum reflection of the sensor is enhanced 12 dB than that obtained by etching of the Er- or B-doped fibers. High fringe contrast of 22 dB is obtained. The strain and temperature responses of the MEFPI sensors are investigated in this experiment. Good linearity and high sensitivity are achieved, with wavelength-strain and wavelength-temperature sensitivities of 7.82 pm/με and 5.01 pm/°C, respectively.  相似文献   

9.
Ⅲ-Ⅴ quantum dot(QD) lasers monolithically grown on CMOS-compatible Si substrates are considered as essential components for integrated silicon photonic circuits.However,epitaxial growth of Ⅲ-Ⅴ materials on Si substrates encounters three obstacles:mismatch defects,antiphase boundaries(APBs),and thermal cracks.We study the evolution of the structures on U-shaped trench-patterned Si(001) substrates with various trench orientations by homoepitaxy and the subsequent heteroepitaxial growth of GaAs film.The results show that the formation of(111)-faceted hollow structures on patterned Si(001) substrates with trenches oriented along [110] direction can effectively reduce the defect density and thermal stress in the GaAs/Si epilayers.The(111)-faceted silicon hollow structure can act as a promising platform for the direct growth of Ⅲ-Ⅴ materials for silicon based optoelectronic applications.  相似文献   

10.
In this paper, in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs), we demonstrate better performances of recessed-gate A1203 MIS-HEMTs which are fabricated by Fluorine-based Si3N4 etching and chlorine- based A1CaN etching with three etching times (15 s, 17 s and 19 s). The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of A1GaN/CaN HEMT. Through the recessed-gate etching, the transconductanee increases effectively. When the recessed-gate depth is 1.02 nm, the best interface performance with Tit----(0.20--1.59) p~s and Dit :(0.55-1.08)x 1012 cm-2.eV- 1 can be obtained. After chlorine-based etching, the interface trap density reduces considerably without generating any new type of trap. The accumulated chlorine ions and the N vacancies in the AIGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices. By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times, it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively.  相似文献   

11.
微透镜阵列反应离子束蚀刻传递研究   总被引:4,自引:0,他引:4  
许乔  杨李茗 《光学学报》1998,18(11):523-1527
提出了一种微透镜阵列复制的新方法-反应离子束蚀刻法(RIBE)它在工作原理和参数控制等方面较传统的蚀刻方法有很大的先进性,能够实现蚀刻过程的精确控制,本文详细阐述了反应离子蚀刻过程中的蚀刻选择性的控制方法,通过对各种蚀刻参数的控制,最终实现了微透镜阵列在硅等红外材料上面形传递的深度蚀刻,口径φ100μm的F/2微透镜阵列在硅基底上的传递精度达1:1.03,无侧向钻蚀。  相似文献   

12.
大面积高深宽比硅微通道板阵列制作   总被引:1,自引:1,他引:0  
利用光辅助电化学刻蚀方法,在厚度为425μm的5英寸硅片上,制作成深宽比达50以上的微通道板阵列结构.理论分析了影响微孔阵列形貌形成的关键因素,并结合实验条件,通过调整刻蚀电压值和根据莱曼模型修正实验电流值得到理想的孔壁形貌.结果表明,相比于目前在硅基上制作高深宽微结构的几种技术,光辅助电化学刻蚀方法能够实现孔壁光滑、面积大和深宽比高的微通道板阵列结构的低成本制作.  相似文献   

13.
D. Buttard  C. Krieg  P. Gentile 《Surface science》2006,600(22):4931-4936
Sacrificial anodic oxidation is used to thin silicon wafer bonding substrates. Chemical solutions, sensitive to the periodic strain field present in the upper ultra-thin silicon layer, are employed for selective etching. Subsequent scanning tunnel microscopy observations reveal a square array of trenches corresponding to the buried screw dislocation network initially formed at the bonding interface. The influence of the initial thickness and the annealing of the ultra-thin film on roughness and trench depth of the nanopatterned substrates are examined. Germanium growth experiments are performed in order to show the self-organization character of resulting structured surfaces.  相似文献   

14.
多晶硅表面酸腐蚀制备绒面研究   总被引:2,自引:2,他引:0  
张发云  叶建雄 《光子学报》2014,40(2):222-226
采用各向同性腐蚀法制备多晶硅绒面,腐蚀液为HF和HNO3的混合溶液,缓和剂为NaH2PO4.2H2O溶液.利用SEM、AFM和紫外分光光度计对硅片绒面进行检测和分析,初步探讨了酸腐蚀机理.结果表明:采用NaH2PO4.2H2O溶液作为缓和剂,腐蚀后的硅片表面具有均匀的腐蚀坑,表面陷光效果较好,通过优化各种参量,反应速度可以控制在2 μm/min左右,适合工业生产的要求.在富HF时,硅片表面易形成尖锐边缘的腐蚀坑,出现或多或少的小孔,反射率最低可达16.5%~17.5%|在富HNO3时,硅片表面易形成腐蚀坑较浅、尺寸偏大的气泡状绒面或光面,反射率较高.  相似文献   

15.
The properties of porous silicon prepared at different illumination and electrochemical conditions were studied. The preparation procedure was based on the electrochemical etching in HF containing electrolyte. In the dissolution of n-type silicon, an external source of light is necessary to obtain a sufficient holes flux density. Here, illumination was applied from the backside of the wafer (the side not immersed in the electrolyte), from topside (the side immersed in the electrolyte), and for the highly doped silicon, etching proceeds without illumination. The electrolyte contains HF in the range 2–50 wt%. The highest current density flows with topside assisted illumination. Backside illumination and etching in the dark resulted in a reduction in the current density. In the dark the current density significantly increased at a higher anodic bias. These conditions gave rise to pores formation with a diameter from 20 nm up to 3 μm. The smallest pore size was obtained for highly doped n-Si (111) wafers, etched without illumination. The present paper confirms the possibility of porous silicon formation in the dark and with backside illumination, these being alternative methods for topside assisted illumination etching methods.  相似文献   

16.
利用化学气相沉积法在抛光铜衬底上制备出六角形石墨烯晶畴, 并且在高温条件下对石墨烯晶畴进行氢气刻蚀, 利用光学显微镜和扫描电子显微镜对石墨烯晶畴进行观测, 发现高温条件下石墨烯晶畴表面能够被氢气刻蚀出网络状和线状结构的刻蚀条纹. 通过电子背散射衍射测试证明了刻蚀条纹的形态、密度与铜衬底的晶向有密切关系. 通过对比实验证明了石墨烯表面上的刻蚀条纹是由于石墨烯和铜衬底的热膨胀系数不同, 在降温过程中, 石墨烯表面形成了褶皱, 褶皱在高温氢气气氛下发生氢化反应形成的. 对转移到二氧化硅衬底的石墨烯晶畴进行原子力显微镜测试, 测试结果表明刻蚀条纹的形貌、密度与石墨烯表面褶皱的形貌、密度十分相似. 进一步证明了刻蚀条纹是由于褶皱结构被氢气刻蚀引起的. 实验结果表明, 即使在六角形石墨烯晶畴表面也存在褶皱和点缺陷. 本文提供了一种便捷的方法来观察铜衬底上石墨烯褶皱的分布与形态; 同时, 为进一步提高化学气相沉积法制备石墨烯的质量提供了更多参考.  相似文献   

17.
准分子激光电化学刻蚀金属的研究   总被引:1,自引:0,他引:1  
为了探寻准分子激光电化学刻蚀工艺的特性,采用功率密度大的248nm准分子激光聚焦照射浸在溶液中的金属表面,实现了一种激光电化学刻蚀复合工艺。在实验的基础上,通过对激光电化学刻蚀金属和硅的基本形貌进行比较和分析,研究了该工艺的工艺特性。研究结果表明,该复合工艺为激光直接刻蚀和激光热诱导电化学刻蚀。其中激光热诱导电化学刻蚀是通过激光的光热效应和由激光诱导的冲击波来实现对腐蚀液和材料的冲击、微搅拌等作用的。  相似文献   

18.
唐元洪  裴立宅  陈扬文  郭池 《物理》2006,35(6):466-468
文章作者的研究小组在世界上首次合成自组生长的硅纳米管(SiNTs)后,对它的稳定性研究又获得进展.采用5wt%的HF酸对自组生长的硅纳米管的稳定性进行了研究,研究表明HF酸可以去除硅纳米管的氧化物外层,只剩下晶体硅纳米管,说明所得到的硅纳米管是一种稳定结构,因而使其应用研究开发成为可能.研究表明,硅纳米管的稳定性与其生长形成过程密切相关。  相似文献   

19.
提出了一种感测单元不直接接触流场的微剪切应力传感器结构,详细阐述了其感测单元MEMS制作工艺。采用热氧化硅掩膜方法解决了硅深刻蚀的选择比问题;优化后的硅深刻蚀工艺参数:刻蚀功率1600 W、低频(LF)功率100 W,SF6流量360 cm3/min,C4F8流量300 cm3/min,O2流量300 cm3/min。采用Cr/Au掩膜,30 ℃恒温低浓度HF溶液解决了玻璃浅槽腐蚀深度控制问题;喷淋腐蚀和基片旋转等措施提高了玻璃浅槽腐蚀表面质量。采用上述MEMS工艺制作了微剪切应力传感器样品,样品测试结果表明:弹性悬梁长度和宽度误差均在2 m以内、玻璃浅槽深度误差在0.03 m以内、静态电容误差在0.2 pF以内,满足了设计要求。  相似文献   

20.
The morphology of silicon nanowire (SiNW) layers formed by Ag-assisted electroless etching in HF/H2O2 solution was studied. Prior to the etching, the Ag nanoparticles were deposited on p-type Si(1 0 0) wafers by electroless metal deposition (EMD) in HF/AgNO3 solution at room temperature. The effect of etching temperature and silicon resistivity on the formation process of nanowires was studied. The secondary ion mass spectra (SIMS) technique is used to study the penetration of silver in the etched layers. The morphology of etched layers was investigated by scanning electron microscope (SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号