首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve visible light photocatalytic activities of the nanometer TiO2, a novel and efficient Cr,S-codoped TiO2 (Cr-TiO2-S) photocatalyst was prepared by precipitation-doping method. The crystalline structure, morphology, particle size, and chemical structure of Cr-TiO2-S were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) techniques, respectively. Results indicate that the doping of Cr and S, cause absorption edge shifts to the visible light region (λ > 420 nm) compare to the pure TiO2, reduces average size of the TiO2 crystallites, enhances desired lattice distortion of Ti, promotes separation of photo-induced electron and hole pair, and thus improves pollutant decomposition under visible light irradiation. The photocatalytic activities of Cr-TiO2-S nanoparticles were evaluated using the photodegradation of methyl orange (MO) as probe reaction under the irradiation of UV and visible light and it was observed that the Cr-TiO2-S photocatalyst shows higher visible photocatalytic activity than the pure TiO2. The optimal Cr-TiO2-S concentration to obtain the highest photocatalytic activity was 5 mol% for both of Cr and S.  相似文献   

2.
The BiVO4-based photocatalysts loaded with rare earth (RE=Ho, Sm, Yb, Eu, Gd, Nd, Ce and La) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), nitrogen adsorption for the BET specific surface area and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by decolorization of methylene blue (MB) under visible light irradiation. The results of XRD, SEM and XPS analysis deduced that the rare earth ions were present as RE2O3 in the samples. The DRS analysis showed the shift in the absorbption edge from the UV to the visible range: Ho3+-BiVO4 < Sm3+-BiVO4 < Yb3+-BiVO4 < Eu3+-BiVO4 < Gd3+-BiVO4 < Nd3+-BiVO4 < La3+-BiVO4 < Ce3+-BiVO4 < BiVO4. Gd3+-BiVO4 had the highest photocatalytic activity among all the RE3+-BiVO4 catalysts. The optimal Gd content was 8 at% under visible light irradiation. This beneficial effect was attributed to the specific electron structure characteristics of gadolinium and the increasing in the separation efficiency of the electron-hole pairs. On the contrast, the other rare earth ions had the detrimental effect on the photocatalytic decolorization of MB.  相似文献   

3.
The InVO4/TiO2 nanojunction composites with different weight ratio of 1:10, 1:25, 1:50 and 1:100 were successfully constructed using an ion impregnate method, followed by calcining temperature 400 °C for 2 h in Ar. The sono- and photo-catalytic activities of the InVO4/TiO2 nanojunction composites were evaluated through the degradation of methyl orange (MO) in aqueous solution under ultrasonic and visible light irradiation, respectively. The experimental results determined that the (1:50) InVO4/TiO2 nanojunction composite has exhibited the highest sonocatalytic activity. It can be ascribed to vectorial charge transfer at the co-excited InVO4/TiO2 interface under ultrasonic irradiation, results in the complete separation of electrons and holes. Interestingly, the (1:25) InVO4/TiO2 nanojunction composite displayed superior photocatalytic activity for MO degradation under visible light, indicating that InVO4 as a narrow band gap sensitizer can expand photocatalytic activity of TiO2 to visible region, and the charge transfer can be formed from high energy level of InVO4 conduction band to the low energy level of TiO2 conduction band in a present of excited InVO4 alone under visible light irradiation. The sono- and photo-catalytic activities of the InVO4/TiO2 nanojunction composites were found to be dependent significantly on different InVO4 contents, which can be explained by the influence of charge transfer on the basis of the work functions of different catalysis mechanism.  相似文献   

4.
Novel Pd/InVO4-TiO2 thin films with visible light photocatalytic activity were synthesized from the Pd and InVO2 co-doped TiO2 sol via sol-gel method. The photocatalytic activities of Pd/InVO4-TiO2 thin films were investigated based on the oxidative decomposition of methyl orange in aqueous solution. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy (UV-vis). The results indicate that the Pd/InVO4-TiO2 thin films are compact, uniform and consist of sphere nanoparticles with diameters about 80-100 nm. The UV-vis spectra show that the Pd/InVO4-TiO2 thin films extend the light absorption spectrum toward the visible region. XPS results reveal that doped Pd exist in the form of metallic palladium. The photocatalytic experiments demonstrate that Pd doping can effectively enhance the photocatalytic activities of InVO4-TiO2 thin films in decomposition of aqueous methyl orange under visible light irradiation. It has been confirmed that Pd/InVO4-TiO2 thin films could be excited by visible light (E < 3.2 eV) due to the existence of the Pd and InVO4 doped in the films.  相似文献   

5.
Carboxylated-azobenzene chromophore modified TiO2 nanowire composites were prepared and characterized. Photocurrent measured with monochromatic incident light irradiation results showed that azobenzene modified TiO2 nanowire electrode had obviously higher photocurrent and broader visible light response covering range of 350-650 nm, and the wavelength position corresponding to the maximum photocurrent was red shift to about 470 nm. After alternate irradiation with UV and visible light, the azobenzene modified TiO2 nanowire electrode exhibited obvious photoelectrochemical switching properties. Furthermore, the photocurrent under visible light irradiation was much higher than that under UV irradiation due to the cis-to-trans isomerization transformation of azobenzene chromophore.  相似文献   

6.
In this study we present the effects of iron oxide (Fe2O3) on titanium dioxide (TiO2) in synthesising visible-light reactive photocatalysts. A Fe2O3-TiO2 composite photocatalyst was synthesized from Fe2(SO4)3 and Ti(SO4)2 by a ethanol-assisted hydrothermal method. The preparation conditions were optimized through the investigation of the effects of hydrothermal temperature and time as well as molar ratio of Ti to Fe on the photocatalytic activity. The visual, physical and chemical properties of the Fe2O3-TiO2 composites were investigated. The results showed that α-Fe2O3 and anatase TiO2 were present in the composites. The Fe2O3-TiO2 synthesized under optimum condition consisted of mesoporous structure with an average pore size of 4 nm and a surface area of 43 m2/g. Under visible and solar light irradiation, the photocatalytic activity of optimized sample was significantly higher than that of pure TiO2. This sample led to a photodegradation efficiency of 90% and 40% of auramine under visible light and solar light, respectively.  相似文献   

7.
In this paper, WxTi1−xO2 solid solutions (x = 0.000, 0.005, 0.010, 0.015, and 0.020) microspheres were synthesized with an aerosol-assisted flow synthesis method. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption, UV-vis diffuse reflectance spectrum (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the as-prepared catalysts were measured by the degradation of rhodamine B (RhB) under visible light irradiation (λ ≥ 420 nm). All the solid solutions exhibited higher photocatalytic activities than pure TiO2 and the W0.015Ti0.985O2 solid solution possessed the highest photocatalytic activity. The degradation constant of RhB on W0.015Ti0.985O2 solid solution catalyst was about 15 times of that of the pure TiO2 and 25 times of that of Degussa P25, respectively. This study provides an effective method to prepare visible light photocatalysts on a large scale.  相似文献   

8.
The mesoporous N, S-codoped TiO2(B) nanobelts are synthesized via hydrothermal synthesis and post-treatment, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption measurements (BET), X-ray photoelectron spectra (XPS), and UV-vis diffuse reflectance spectra (DRS). The results show that the prepared samples are mesoporous structured and exhibit stronger absorption in the visible light region with red shift in the absorption edge. The photocatalytic activity of N, S-codoped mesoporous TiO2(B) nanobelts is evaluated by the photocatalytic photodegradation of potassium ethyl xanthate (KEX) under visible light irradiation. It is found that the photocatalytic activity of the prepared samples increases with increasing the molar ratio of thiourea to Ti (R). At R = 3, the photocatalytic activity of the N, S-codoped TiO2(B) sample TBLTS-3 reaches a maximum value. With further increasing R, the photocatalytic activity of the sample decreases. The high photocatalytic activity of N, S-codoped TiO2(B) nanobelts can be attributed to the balance between strong absorption in visible light region and low recombination rate of electron/hole pairs.  相似文献   

9.
TiO2 thick films deposited on macroporous reticulated Al2O3 foams with pore size of 10 ppi and 15 ppi were prepared using dip coating from slurries of Aeroxide® P25 nanopowder and precipitated titania. All prepared films have sufficiently good adhesion to the surface of the substrate also in case of strongly cracked films. No measurable release of deposited TiO2 after repeated photocatalytic cycles was observed. The photocatalytic activity was characterized as the rate of mineralization of aqueous phenol solution under irradiation of UVA light by TOC technique. The best activity was obtained with Aeroxide® P25 coated Al2O3 foam with the pore size of 10 ppi, annealed at 600 °C. The optimal annealing temperature for preparation of films from precipitated titania could be determined at 700 °C. Films prepared by sol-gel deposition technique were considerably thinner compared to coatings made of suspensions and their photocatalytic activity was significantly smaller.  相似文献   

10.
The novel visible-light-activated La/I/TiO2 nanocomposition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by X-ray powder diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, transmission electron microscopy (TEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of La/I/TiO2 was evaluated by studying photodegradation of reactive blue 19 as a probe reaction under simulated sunlight irradiation. Photocatalytic experiment results showed that the maximum specific photocatalytic activity of the La/I/TiO2 photocatalyst appeared when the molar ratio of La/Ti was 2.0 at%, calcined at 350 °C for 2 h, due to the sample with good crystallization, high BET surface area and small crystal size. Under simulated sunlight irradiation, the degradation of reactive blue 19 aqueous solution reached 98.6% in 80 min, which showed La/I/TiO2 photocatalyst to be much higher photocatalytic activity compared to standard Degussa P25 photocatalyst. The higher visible light activity is due to the codoping of lanthanum and iodine.  相似文献   

11.
To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Nitrogen and carbon doping TiO2−xyNxCy films were obtained by heating the TiO2 gel in an ionized N2 gas and then were calcined at 500 °C. The TiO2−xyNxCy films have revealed an improvement over the TiO2 films under visible light (wavelength, 500 nm) in optical absorption and photocatalytic activity such as photodegradation of methyl orange. X-ray photoemission spectroscopy, infrared spectrum and UV-visible (UV-vis) spectroscopy were used to find the difference of two kinds of films. Nitrogen and carbon doped into substitutional sites of TiO2 has been proven to be indispensable for band-gap narrowing and photocatalytic activity.  相似文献   

12.
We have investigated the control of photocatalytic behavior under deposited conditions of non-sintered target of different molar ratios with TiO2 and La2O3 from 1:0 to 1:2 for heavily La doping, and post-annealing temperature from 600 °C to 1000 °C for crystallizing by pulsed laser deposition. We have successfully crystallized heavily La-doped TiO2 films with post-annealing temperature over 800 °C and with molar ratio of TiO2:La2O3 over 1:1 on a quartz substrate. Heavily La-doped TiO2 films are observed the decomposition of methylene blue and a water-splitting reaction in photocatalytic behavior under Xe light irradiation. When stoichiometric La-doped TiO2 (TiO2:La2O3 = 1: 1) is synthesized with heat-treatment at 900 °C, the best results are obtained under photocatalytic behavior and pure La2Ti2O7 crystalline were obtained.  相似文献   

13.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

14.
The layered perovskite type oxides, K2La2Ti3O10 and zinc(Zn)-doped K2La2Ti3O10 were prepared by sol-gel method and were characterized by power X-ray diffraction, UV-vis diffuse reflectance and X-ray photoelectron spectroscopy. The photocatalytic activity for water splitting of the catalyst powders was investigated with I as electron donor under ultraviolet and visible light irradiation respectively. The electronic structure of the powders has been analyzed by the first principles calculation, which reveals the photo responses in the visible region and the improvement of the photocatalytic activity of K2La2Ti3O10. Conclusions were made that zinc(Zn)-doped K2La2Ti3O10 exhibited higher reactivity for hydrogen production. When I was used as electron donor, the optimum doping concentration of zinc(Zn) was found to be 0.015:1 (nZn:nTi). The average hydrogen production rates were 126.6 μmol/(gcat h) under ultraviolet irradiation and 55.5 μmol/(gcat h) under visible light irradiation which were raised by 131% and 251% compared with undoped K2La2Ti3O10 photocatalyst, respectively.  相似文献   

15.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

16.
Fe3+-doped TiO2 film deposited on fly ash cenosphere (Fe-TiO2/FAC) was successfully synthesized by the sol-gel method. These fresh photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analyses (TGA). The XRD results showed that Fe element can maintain metastable anatase phase of TiO2, and effect of temperature showed rutile phase appears in 650 °C for 0.01% Fe-TiO2/FAC. The SEM analysis revealed the Fe-TiO2 films on the surface of a fly ash cenosphere with a thickness of 2 μm. The absorption threshold of Fe-TiO2/FACs shifted to a longer wavelength compared to the photocatalyst without Fe3+-doping in the UV-vis absorption spectra. The photocatalytic activity and kinetics of Fe-TiO2/FAC with varying the iron content and the calcination temperatures were investigated by measuring the photodegradation of methyl blue (MB) during visible light irradiation. Compared with TiO2/FAC and Fe3+-doped TiO2 powder (Fe-TiO2), the degradation ratio using Fe-TiO2/FAC increased by 33% and 30%, respectively, and the best calcined temperature was 450 °C and the optimum doping of Fe/Ti molar ratio was 0.01%. The Fe-TiO2/FAC particles can float in water due to the low density of FAC in favor of phase separation to recover these photocatalyst after the reaction, and the recovery test shows that calcination contributes to regaining photocatalytic activity of Fe-TiO2/FAC photocatalyst.  相似文献   

17.
Nanoparticles of Zn1−xCuxS with various dopant contents (0 ≤ x ≤ 0.15) were prepared in water by refluxing for 90 min at about 95 °C. Powder X-ray diffraction (XRD) patterns of the nanoparticles demonstrate that loading of Cu2+ ions does not change the crystal structure of ZnS. Scanning electron microscopy (SEM) images demonstrate that size of the nanoparticles decreases with increasing Cu2+ ions. UV-Vis diffuse reflectance spectra (DRS) of the nanoparticles show significant absorption in visible light region. Adsorption capacity of the nanoparticles for methylene blue (MB) increases with mole fraction of copper ions. Photocatalytic activity of the nanoparticles toward photodegradation of MB was evaluated under visible light irradiation. The results indicate that Zn0.85Cu0.15S nanoparticles exhibit highest photocatalytic activity among the prepared samples. Moreover, effects of refluxing time applied for preparation of the nanoparticles and calcination temperature were investigated.  相似文献   

18.
A hydrophobic/super-hydrophilic pattern was prepared on a TiO2 thin film by a new fabrication process. The process consists of five key steps: (1) photocatalytic reduction of Ag+ to Ag (nucleation), (2) electroless Cu deposition, (3) oxidation of Cu to CuO, (4) deposition of a self-assembled monolayer (SAM), and (5) photocatalytic decomposition of selected areas of the SAM. A hydrophobic/super-hydrophilic pattern with 500-μm2 hydrophilic areas was obtained in this process. It is particularly noteworthy that a UV irradiation time of only 1 s was sufficient for the nucleation step in the patterning process.  相似文献   

19.
We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.  相似文献   

20.
CdS nanoparticles were in situ deposited on TiO2 nanosheets and nanorods under hydrothermal conditions, respectively. The effect of CdS–TiO2 interface structure on hydrogen production activity was mainly investigated under visible light irradiation. The results showed that the TiO2 nanosheet-based CdS/TiO2 showed a higher activity and a higher cyclability than the nanorod-based sample due to the stronger interaction of CdS with the (0 0 1) facets of TiO2 than with the (1 0 1) facets. It was proposed that the strong interaction between CdS nanoparticles and TiO2 nanosheets effectively refrains the recombination of electrons and holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号