首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel Pd/InVO4-TiO2 thin films with visible light photocatalytic activity were synthesized from the Pd and InVO2 co-doped TiO2 sol via sol-gel method. The photocatalytic activities of Pd/InVO4-TiO2 thin films were investigated based on the oxidative decomposition of methyl orange in aqueous solution. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy (UV-vis). The results indicate that the Pd/InVO4-TiO2 thin films are compact, uniform and consist of sphere nanoparticles with diameters about 80-100 nm. The UV-vis spectra show that the Pd/InVO4-TiO2 thin films extend the light absorption spectrum toward the visible region. XPS results reveal that doped Pd exist in the form of metallic palladium. The photocatalytic experiments demonstrate that Pd doping can effectively enhance the photocatalytic activities of InVO4-TiO2 thin films in decomposition of aqueous methyl orange under visible light irradiation. It has been confirmed that Pd/InVO4-TiO2 thin films could be excited by visible light (E < 3.2 eV) due to the existence of the Pd and InVO4 doped in the films.  相似文献   

2.
Nitrogen doped TiO2 nanoparticles decorated on graphene sheets are successfully synthesized by a low-temperature hydrothermal method. The resulting GR-N/TiO2 composites are characterized by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-Ray photoelectron spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The optical properties are studied using UV–visible diffuse reflectance spectroscopy (DRS), which confirms that the spectral responses of the composite catalysts are extended to the visible-light region and show a significant reduction in band gap energy from 3.18 to 2.64 eV. Photoluminescence emission spectra verify that GR-N/TiO2 composites possess better charge separation capability than pure TiO2. The photocatalytic activity is tested by degradation of methyl orange (MO) dye under visible light irradiation. The results demonstrate that GR-N/TiO2 composites can effectively photodegrade MO, showing an impressive photocatalytic enhancement over pure TiO2. The dramatically enhanced activity of composite photocatalysts can be attributed to great adsorption of dyes, enhanced visible light absorption and efficient charge separation and transfer processes. This work may provide new insights into the design of novel composite photocatalysts system with efficient visible light activity.  相似文献   

3.
采用水热法制备Bi2WO6-BiPO4异质结光催化剂.利用模拟太阳光照射下的罗丹明B降解实验评价了Bi2WO6-BiPO4复合物的光催化性能.结果表明,Bi2WO6-BiPO4光催化活性比Bi2WO6和BiPO4高得多.当Bi2WO6与BiPO4的摩尔比为1:1时复合光催化剂对罗丹明B的降解率最高.Bi2WO6-BiPO4催化活性增强主要归结为两者之间形成了有效的异质结结构,其内建电场能够促进光生载流子的分离.同时,Bi2WO6的加入增强了其对可见光的吸收.研究表明O2· -和h+在光催化降解过程中是主要的活性物种  相似文献   

4.
Composite photocatalysts composed of TiO2 and ZrO2 have been prepared via the sol-gel method. The as-prepared nanocomposites are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectrometry and fluorescence emission spectra. The results shows that TiO2/ZrO2 nanocomposites are composed of mainly anatase titania and tetragonal ZrO2. Incorporating TiO2 particles with ZrO2 plays an important role in promoting the formation of nanoparticles with an anatase structure and leads to decreased fluorescence emission intensity. Most of the TiO2/ZrO2 nanocomposites exhibited comparable photocatalytic activity compared with commercial TiO2 for the degradation aqueous methyl orange (MO) under ultraviolet irradiation, while the composite with Zr/Ti mass ratio of 15.2% shows the highest photocatalytic performances. Furthermore, the as-prepared nanocomposites can be reused with little photocatalytic activity loss. Without any further treatment besides rinsing, the photocatalytic activity of TiO2/ZrO2 (15.2%) composites is still higher than after five-cycle utilization.  相似文献   

5.
以棉花纤维为模板,以钛酸四正丁酯、硝酸铈铵和磷钨酸为原料采用模板法制备了一系列铈和磷钨酸共掺杂的、具有中空纤维结构的TiO2光催化材料, 利用扫描电子显微镜、X射线衍射、BET和紫外-可见光谱等技术对其形貌、晶体结构及表面结构、光吸收特性等进行了表征. 以苯酚溶液的光催化降解为模型反应,考察了不同掺杂量的样品在紫外和可见光下的光催化性能. 结果表明,用模板法制备的TiO2纤维材料具有中空结构,共掺杂的TiO2纤维在紫外和可见光条件下较纯TiO2纤维和单掺杂TiO2纤维对苯酚溶液具有更好的光催化降解效果, 且铈和磷钨酸的掺杂量显著影响该纤维材料的催化性能;当铈掺杂量为0.3mol%和磷钨酸掺杂量为2mol%,在500 oC焙烧2 h所得中空纤维材料的催化性能最佳,4 h即可使苯酚溶液的降解率达98.5%;重复使用4次仍可使苯酚溶液的降解率保持在87%以上,且该催化剂材料易于离心分离去除.  相似文献   

6.
Reverse microemulsions, consisting of n-hexanol, Triton X-100, Cyclohexane and aqueous salt solutions, were used to synthesize BiOI, TiO2 and BiOI/TiO2 hybrid nanoparticles at room temperature. The particles had been characterized by X-ray powder diffraction, FT-IR spectra, TG-DSC analysis, nitrogen sorption, electron microscopy, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of those particles were evaluated by degradation of methyl orange under visible light irradiation. The BiOI/TiO2 composites showed about 5 times higher photocatalytic performances than BiOI when the mole ratio of BiOI to TiO2 was 75%. The remarkable enhancement in the visible light photocatalytic activities of the BiOI/TiO2 heterostructures could be first attributed to the effective electron-hole separations at the interfaces of the two semiconductors, which facilitated the transfer of the photoinduced carriers. Meanwhile, the heterojunction formed between BiOI and TiO2 would further retard the recombination of photoinduced carriers. In addition, high degree of crystallization, bimodal porous structure, relative large specific surface area, and appropriate energy band gap have great contribution to the enhancement of photocatalytic performance.  相似文献   

7.
Nano-silicon (nc-Si) was utilized as the charges generator to promote the photocatalytic and super-hydrophilic reactivity of TiO2 film under visible light irradiation. The photocatalytic ability of TiO2/nc-Si composite photocatalyst was evaluated by a set of experiments to photodecompose 100 ppm methylene blue (MB) in aqueous solution. And the super-hydrophilic property was characterized by measuring the water droplet contacts angle, under visible light irradiation in atmospheric air and at room temperature. Under 100 mW/cm2 visible light irradiation, the droplet contact angles were reduced to 0° within 4 h with nc-Si charge generator. Additionally, the rate constant of MB photo-degradation was promoted 6.6 times.  相似文献   

8.
Jing Cao 《Applied Surface Science》2011,257(16):7083-7089
In this paper, a novel composite photocatalyst AgI/AgCl/TiO2 was prepared by ion exchange method and characterized by XRD, SEM and UV-Vis spectrometry. The as-prepared AgI/AgCl/TiO2 composites show much higher photocatalytic activity than AgCl/TiO2 and AgI/TiO2 under visible-light irradiation (λ > 400 nm) in the process of methyl orange (MO) degradation. When the molar percentage of AgI to initial AgCl is 20% (sample SE-20%), the maximal degradation efficiency of MO has reached 85.8% after irradiation for 120 min. The enhancement of photocatalytic activity of the composite photocatalyst AgI/AgCl/TiO2 will be attributed to its good absorption in the visible-light region, especially low recombination rate of the electron-hole pairs based on the photoluminescence (PL) spectra investigation of AgI/AgCl/TiO2 and the matching band structures of AgI, AgCl and TiO2. The detection of reactive species by radical scavengers displays that O2 and H2O2 are the main reactive species for the degradation of MO under visible-light irradiation. Moreover, PL analysis by using terephthalic acid (TA) as a probe molecule further reveals that OH can be negligible for the degradation of MO.  相似文献   

9.
In this study we present the effects of iron oxide (Fe2O3) on titanium dioxide (TiO2) in synthesising visible-light reactive photocatalysts. A Fe2O3-TiO2 composite photocatalyst was synthesized from Fe2(SO4)3 and Ti(SO4)2 by a ethanol-assisted hydrothermal method. The preparation conditions were optimized through the investigation of the effects of hydrothermal temperature and time as well as molar ratio of Ti to Fe on the photocatalytic activity. The visual, physical and chemical properties of the Fe2O3-TiO2 composites were investigated. The results showed that α-Fe2O3 and anatase TiO2 were present in the composites. The Fe2O3-TiO2 synthesized under optimum condition consisted of mesoporous structure with an average pore size of 4 nm and a surface area of 43 m2/g. Under visible and solar light irradiation, the photocatalytic activity of optimized sample was significantly higher than that of pure TiO2. This sample led to a photodegradation efficiency of 90% and 40% of auramine under visible light and solar light, respectively.  相似文献   

10.
The novel orthorhombic InVO4 nanofibers have been successfully synthesized by annealing electrospun precursor fibers. Citric acid was used as a ligand for it could react with metal salts to get a transparent homogeneous precursor solution and homogeneous precursor sol for electrospining. Polyvinyl pyrrolidone (PVP, K-30) was used as a binder and a structure guide reagent because it was one kind of water-soluble polymers. It is easy to gain one-dimensional materials while the viscosity of the citrate/PVP sol was suitable. The structure, morphology and photocatalytic properties of the nanofibers were characterized by X-ray diffraction (XRD), thermogravimetry analysis (TGA), scanning electron microscopy (SEM) analysis, UV-vis spectrophotometer and fluorescence spectrophotometer. The nanofibers calcined at 700 °C were orthorhombic InVO4 with a width in the range of 30-100 nm and length in micron-grade. This one-dimensional pure orthorhombic InVO4 had the higher photocatalytic activity under visible light irradiation. The photo-degradation rate of nitrobenzene aqueous solution under visible light reached 69% after 6 h. It is obvious that the orthorhombic InVO4 nanofibers have a potential application in wastewater-treatment.  相似文献   

11.
CdS/TiO2 nanocomposites were prepared via a simple wet chemical method, and characterized through X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their ability to degrade Acid Rhodamine B was investigated under visible light irradiation. The results indicate that CdS/TiO2 nanocomposite with a mass ratio of 4:1(TiO2:CdS) showed high photocatalytic activity and the CdS loaded on TiO2 nanotube surface exhibited a hexagonal phase. The dispersion of CdS on TiO2 nanotube surface had an important effect on the degradation efficiency of pollutant, which provides a strategy for practical industry application.  相似文献   

12.
Fluorinated TiO2 hollow microspheres with three-dimensional hierarchical architecture were prepared by solvothermally treatment using solid microspheres as precursor. The obtained solid and hollow TiO2 microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The photocatalytic activity of as-prepared solid and hollow TiO2 microspheres was determined by degradation of methyl orange (MO) under visible light irradiation. The results showed that the surface fluorination, the existence of accessible mesopores channels, and the increased light harvesting abilities could remarkably improve the photocatalytic activity of TiO2 hollow microspheres.  相似文献   

13.
In order to improve visible light photocatalytic activities of the nanometer TiO2, a novel and efficient Cr,S-codoped TiO2 (Cr-TiO2-S) photocatalyst was prepared by precipitation-doping method. The crystalline structure, morphology, particle size, and chemical structure of Cr-TiO2-S were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) techniques, respectively. Results indicate that the doping of Cr and S, cause absorption edge shifts to the visible light region (λ > 420 nm) compare to the pure TiO2, reduces average size of the TiO2 crystallites, enhances desired lattice distortion of Ti, promotes separation of photo-induced electron and hole pair, and thus improves pollutant decomposition under visible light irradiation. The photocatalytic activities of Cr-TiO2-S nanoparticles were evaluated using the photodegradation of methyl orange (MO) as probe reaction under the irradiation of UV and visible light and it was observed that the Cr-TiO2-S photocatalyst shows higher visible photocatalytic activity than the pure TiO2. The optimal Cr-TiO2-S concentration to obtain the highest photocatalytic activity was 5 mol% for both of Cr and S.  相似文献   

14.
TiO2 nanocrystals modified by ethoxy groups were prepared by a facile nonhydrolytic solvothermal method and characterized by XRD, TEM, TG-DTA and XPS, which showed an enhanced visible-light photocatalytic activity on the degradation of Rhodamine B compared with TiO2 modified by benzyloxy groups and the “naked” TiO2. The adsorption and degradation pathway of Rhodamine B on TiO2 modified by ethoxy groups were also investigated. The zeta-potential (ζ) results showed that the TiO2 modified by ethoxy groups had high negative surface charge, which incited the positive -N(Et)2 group of RhB absorbing on the TiO2 surface and preferably led the N-dealkylation pathway under visible light irradiation.  相似文献   

15.
The photocatalyst B and N codoped TiO2 (B-N-TiO2) was prepared via the sol-gel method by using boric acid and ammonia as B and N precursors. The doping mode, band structure and photocatalytic mechanism of B-N-TiO2 were investigated well and elucidated in detail. B-N-TiO2 showed the narrowed band gap and thus extended the optical absorption due to interstitial N and [NOB] species in the TiO2 crystal lattice. The coexistence of interstitial N and [NOB] species in the TiO2 crystal lattice and surface NOx species allowed the more efficient utilization of visible light. Simultaneously, interstitial [NOB] and N species and surface B2O3 and NOx species facilitated the separation of photo generated electrons and holes and suppress their recombination effectively. Hence, B-N-TiO2 showed a higher photocatalytic activity than pure TiO2, N-doped TiO2 (N-TiO2) and B-doped TiO2 (B-TiO2) under both UV and visible light irradiation.  相似文献   

16.
Comparative GGA and GGA+U calculations for pure and Mo doped anatase TiO2 are performed based on first principle theory, whose results show that GGA+U calculation provide more reliable results as compared to the experimental findings. The direct band gap nature of the anatase TiO2 is confirmed, both by using GGA and GGA+U calculations. Mo doping in anatase TiO2 narrows the band gap of TiO2 by introducing Mo 4d states below the conduction band minimum. Significant reduction of the band gap of anatase TiO2 is found with increasing Mo doping concentration due to the introduction of widely distributed Mo 4d states below the conduction band minimum. The increase in the width of the conduction band with increasing doping concentration shows enhancement in the conductivity which may be helpful in increasing electron–hole pairs separation and consequently decreases the carrier recombination. The Mo doped anatase TiO2 exhibits the n-type characteristic due to the shifting of Fermi level from the top of the valence band to the bottom of the conduction band. Furthermore, a shift in the absorption edge towards visible light region is apparent from the absorption spectrum which will enhance its photocatalytic activity. All the doped models have depicted visible light absorption and the absorption peaks shift towards higher energies in the visible region with increasing doping concentration. Our results describe the way to tailor the band gap of anatase TiO2 by changing Mo doping concentration. The Mo doped anatase TiO2 will be a very useful photocatalyst with enhanced visible light photocatalytic activity.  相似文献   

17.
The electronic structures, dipole moment and optical properties of C-N-doped and C-N-codoped anatase titanium dioxide (TiO2) are studied using the plane-wave ultrasoft pseudopotential method of density functional theory (DFT). The results revealed that the absorption coefficients of pure TiO2 and N-doped TiO2 are consistent with experimental values in the visible-light region. The bands originating from C/N-2p states lie in the band gap of doped TiO2. A visible-light absorption edge red-shift can be observed. The atomic charges have changed, resulting in devation of the center of gravity of the negative electric charge from the positive electric charge in the super-cell, and their dipole moment would not be zero. The dipole moment has large influence on the optical responses in the visible region of TiO2. Because of the small distance (0.531 nm) between C and N atoms, the covalent bond component was easily enhanced between C atom and adjacent O atom, the covalent bonds making it more difficult for the carrier transfer. Moreover, its optical absorption coefficient is going to reduce in the visible-light region. Under the condition of the larger distance (0.691 nm) between C and N atoms, their interaction can be reduced, which is beneficial to electrons transition; as a result, a significant improvement of the photocatalytic activity of TiO2 has been found under the visible-light irradiation.  相似文献   

18.
Novel graphene–TiO2 (GR–TiO2) composite photocatalysts were synthesized by hydrothermal method. During the hydrothermal process, both the reduction of graphene oxide and loading of TiO2 nanoparticles on graphene were achieved. The structure, surface morphology, chemical composition and optical properties of composites were studied using XRD, TEM, XPS, DRS and PL spectroscopy. The absorption edge of TiO2 shifted to visible-light region with increasing amount of graphene in the composite samples. The photocatalytic degradation of methyl orange (MO) was carried out using graphene–TiO2 composite catalysts in order to study the photocatalytic efficiency. The results showed that GR–TiO2 composites can efficiently photodegrade MO, showing an enhanced photocatalytic activity over pure TiO2 under visible-light irradiation. The enhanced photocatalytic activity of the composite catalysts might be attributed to great adsorptivity of dyes, extended light absorption range and efficient charge separation due to giant π-conjugation system and two-dimensional planar structure of graphene.  相似文献   

19.
A novel copper and sulfur codoped TiO2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl2·2H2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced “red-shift” in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO2 catalyst has higher activity than undoped and Cu or S doped TiO2 catalysts.  相似文献   

20.
The mesoporous N, S-codoped TiO2(B) nanobelts are synthesized via hydrothermal synthesis and post-treatment, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption measurements (BET), X-ray photoelectron spectra (XPS), and UV-vis diffuse reflectance spectra (DRS). The results show that the prepared samples are mesoporous structured and exhibit stronger absorption in the visible light region with red shift in the absorption edge. The photocatalytic activity of N, S-codoped mesoporous TiO2(B) nanobelts is evaluated by the photocatalytic photodegradation of potassium ethyl xanthate (KEX) under visible light irradiation. It is found that the photocatalytic activity of the prepared samples increases with increasing the molar ratio of thiourea to Ti (R). At R = 3, the photocatalytic activity of the N, S-codoped TiO2(B) sample TBLTS-3 reaches a maximum value. With further increasing R, the photocatalytic activity of the sample decreases. The high photocatalytic activity of N, S-codoped TiO2(B) nanobelts can be attributed to the balance between strong absorption in visible light region and low recombination rate of electron/hole pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号