首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
陈苗  张占文  黄勇  史瑞廷  易勇  王红斌 《强激光与粒子束》2018,30(11):112001-1-112001-7
聚α-甲基苯乙烯(PAMS)是制备激光惯性约束聚变(ICF)用靶丸的重要芯轴材料之一。采用快速热解气相色谱-质谱法(Py-GC-MS)和热重分析技术(TG/DTG)分析了不同分子量PAMS的热降解产物和热降解温度,并通过Arrhenius方程计算了不同分子量PAMS的等温热降解活化能。结果表明:分子量对PAMS热降解产物的影响可忽略不计,其热降解产物均为α甲基苯乙烯单体,且产率均接近100%;热降解温度随PAMS分子量的增加而降低,其热降解温度介于240~450 ℃之间;在相同降解率下,随分子量的减小,PAMS的热降解活化能增加,且PAMS的热降解活化能随着热降解率的增加而增加。  相似文献   

2.
采用热重分析技术研究了4种聚-α-甲基苯乙烯原料和其它微球壳层材料的热降解温度。研究表明,聚-α-甲基苯乙烯原料主要失重温度范围为220~340℃,等离子体辉光放电涂层材料的降解温度为350~450℃。升温速率在20℃/min和30℃/min时,降解温度基本相同,升温速率不影响降解的温度范围,低于20℃/min时,随着升温速率升高,降解温度升高。  相似文献   

3.
利用热分析技术(TG/DTG)对聚--甲基苯乙烯(PAMS)在氮气气氛下以不同升温速率为条件进行热降解动力学研究。研究结果表明:PAMS的热降解步骤为一步反应,在升温速率为10 ℃/min时,主要失重温度区间为302~343 ℃,热失重速率最大时温度为325 ℃。在同一温度下,随着升温速率的不断提高,主要降解温度向高温区移动。采用了Kissinger,Flynn-Wall-Ozawa及Coats-Redfern方法研究其动力学参数,确定了PAMS的降解活化能在160~220 kJ/mol之间、反应级数为一级。  相似文献   

4.
为研究分子量对聚-α-甲基苯乙烯(PAMS)空心微球的乳液微封装制备过程中乳液固化速率的影响,实验采用分子量为300~800kg·mol-1的3种PAMS作为油相,测量在聚乙烯醇(PVA)和聚丙烯酸(PAA)两种外水相环境下,PAMS/氟苯(FB)乳液直径、油相浓度和FB扩散通量随固化时间的变化。结果表明,随PAMS分子量减小,PAMS油相浓度上升趋势变慢,FB扩散通量的峰值在分子量为300kg·mol-1时达到最小。因此,可通过降低PAMS分子量的方式来延长乳液的固化时间,从而降低FB的扩散速率,使乳液有足够时间调整形变有利于获得良好的微球球形度。  相似文献   

5.
 介绍了利用筛网设计制作出的一种新型的反弹盘,并用于聚α-甲基苯乙烯(PAMS)微球的弹跳实验。分析了筛网盘与玻璃盘之间的差别和由此带来的对PAMS微球弹跳性能影响。通过实验分别研究了筛网盘相关的参数对微球表面粗糙度的影响。结果表明:采用筛网盘与玻璃盘相比,PAMS微球的弹跳性能的改善非常明显;筛网盘的使用较好地解决了在无等离子体的镀膜环境下(如热蒸发的方法制备PAMS微球表面聚酰亚胺涂层)PAMS微球的弹跳问题;为降低微球表面粗糙度,反弹盘应采用间歇振动的模式。  相似文献   

6.
牛睿祺  董慧茹  王云平 《物理学报》2007,56(7):4235-4241
采用籽晶法制备了大体积高质量的4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐(DAST)晶体,对制备条件进行了优化,对DAST晶体X射线衍射谱图中的主要峰进行了指标化.另外,还对所制备的DAST晶体的透光性、热稳定性进行了研究, 并对265℃的焙烧产物进行了X射线衍射 (XRD)和傅里叶变换红外光谱(FT-IR)测试,证明了260℃是DAST晶体的熔化相变温度, 说明采用熔融法制备DAST晶体是可行的;同时还对DAST晶体的热失重过程进行了初步探讨. 关键词: 4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐 晶体生长 X射线衍射 热稳定性  相似文献   

7.
本文采用显微激光拉曼光谱、红外光谱和热重技术等多种分析方法,对盐酸丁咯地尔的热降解机理进行了较为详细的研究。通过对原药及其热氧降解历程中间产物的拉曼光谱、红外光谱分析,证实了盐酸丁咯地尔的热氧降解过程与热重分析实验的结果基本相符。热降解过程分为两个明显的阶段:第一阶段是盐酸丁咯地尔脱盐酸、脱羧裂解,剩下苯环骨架结构;第二阶段是苯环骨架完全氧化裂解。  相似文献   

8.
导流型热蒸发沉积制备微球表面聚酰胺酸涂层   总被引:1,自引:1,他引:0       下载免费PDF全文
 在自行研制的导流型热蒸发沉积装置上开展了微球表面聚酰胺酸(PAA)涂层制备工艺研究。探讨了单体原料处理和改变升温过程对沉积速率的影响。两种单体分别采用两个相互独立的蒸发源加热蒸发,使用两个晶振膜厚测量探头,通过对膜厚探头、样品盘和导流管端头三者的空间位置和对称关系的调整和实验标定,实现了两种单体近似等化学计量比的沉积。采用间歇性压电振动或敲击配合样品盘的旋转作为微球运动的激励方式,在聚-α-甲基苯乙烯(PAMS)微球上制备出均匀的表面质量好的PAA涂层。  相似文献   

9.
独活浸膏的热裂解产物分析   总被引:1,自引:0,他引:1  
采用在线热裂解-气相色谱质谱联用技术(Py-GC-MS),模拟卷烟燃吸状态,对独活浸膏进行热裂解,裂解产物经气相色谱-质谱联用仪分析。结果表明:独活浸膏的热裂解产物中共鉴定出51种成分,主要有5-羟甲基糠醛(29.00%)、甲氧基欧芹酚(18.79%)、(Z,Z)-9,12-亚油酸(5.76%)、(E)-2-甲基-2-丁烯酸(3.64%)、5-甲基糠醛(2.79%)、十六酸(2.67%)、2,3-二氢-3,5-二羟基-6-甲基-4H-吡喃-4-酮(1.55%)、糠醛(1.29%)等致香物质,该结果为独活浸膏在卷烟中的应用提供理论依据。  相似文献   

10.
红外光谱法研究盐酸丁咯地尔的热降解过程   总被引:1,自引:1,他引:0  
本文采用傅里叶变换红外光谱、热重等多种分析方法,对盐酸丁咯地尔的热降解机理进行了较为详细的研究。实验结果表明盐酸丁咯地尔的热氧降解过程分为两个明显的阶段:一是脱盐酸、脱羧裂解,剩下苯环骨架结构;二是苯环骨架完全氧化裂解。通过对原药及其热氧降解中间产物的红外光谱分析,证实了以上的热氧降解历程。  相似文献   

11.
采用热重-红外联用(TG-FTIR)技术研究了煤直接液化残渣(DCLR)的热解特性,重点对其热解过程气体的析出规律进行了分析讨论。研究表明,液化残渣热失重分为三个阶段,在405.10 ℃以前为残渣热解第一阶段;405.10~523.83 ℃主要为高沸点油和沥青质等的大量热分解阶段,当温度达到478.45 ℃时,失重速率达到最大值,此时失重量约占总失重的40.27%;523.83 ℃以后残渣的失重曲线较为平缓,失重量约占总失重的50.55%,主要由产物的二次分解和矿物质的热分解所造成。热解过程气体产物的析出也分为三个阶段,第一阶段主要释放的是H2O和CO2,第二阶段中析出的主要为CO2,CH4,CO、H2O和少量SO2,同时在458.4~791.9 ℃范围内伴随着焦油的大量析出,第三阶段主要是CO2,CO和H2O的析出。CO2的释放主要归功于含氧杂环或OCO等含氧基团的断裂,而CO的释放主要由醚键以及含氧杂环热分解造成,脂肪烃的热分解是CH4释放的主要原因。  相似文献   

12.
An energy and mass balanced method of determining the pyrolysis temperature is proposed. The concept is to find the pyrolysis temperature that consumes the same amount of energy to produce the same amount of mass when using the pyrolysis front model as when using finite rate kinetics models for the entire charring process. The resulting pyrolysis temperature has the form of pyrolysis rate weighted average temperature. Comparisons between finite rate kinetics and pyrolysis front models for various boundary conditions, geometries, heats of decomposition, kinetic parameters and assumptions used in the literature were made to assess the proposed method. Models using energy and mass balanced pyrolysis temperature show good agreement with finite rate models and the experiments. Extensive numerical studies on various factors influencing the charring material pyrolysis show that heat flux, sample size, heat of decomposition and kinetic parameters are the most important factors for determining an appropriate pyrolysis temperature. Thermal conductivity, specific heat and density have a lesser effect on the pyrolysis temperature. For practical application, a non-dimensional correlation is developed to determine the appropriate pyrolysis temperature without solving the problem by using finite rate models. With this correlation the energy and mass balanced pyrolysis temperature can be determined with a standard deviation of 7.6 K. These predictions are validated by comparison with measurements of wood cylinder pyrolysis. A good agreement suggests that simpler pyrolysis front models yield practically useful and accurate results given an appropriate pyrolysis temperature.  相似文献   

13.
采用热重-红外联用技术(TG-FTIR)对比研究了陕北低变质粉煤(SJC)与重油(HS)、焦煤(JM)、液化残渣(DCLR)共热解过程中气相产物的析出特性。研究表明,随热解温度升高,SJC与HS,JM,DCLR的共热解过程均可分为三个阶段。第一阶段表现为原料表面吸附物的释放,第二阶段发生解聚和分解反应,随温度继续升高,第三阶段形成更为稳定的半焦。在热解第二阶段中均存在煤与添加剂之间的协同效应,SJC作为主要的供氢体,热解产生的氢自由基与HS,JM,DCLR热解产生的小分子自由基碎片之间发生相互作用生成焦油和煤气。SJC和SJC+DCLR在450 ℃附近的温度区间内热解反应进行的更加充分,大部分N元素转移到了焦油组分中。热解过程气相产物中H2O和酚类物质、含N杂环物质及CO的析出伴随着热解的整个温度区间,SJC+JM和SJC+HS热解过程含N物质的转移主要集中在400~650 ℃区间,CH4和脂肪烃类物质的析出最高峰出现在450 ℃附近,而SJC+DCLR和SJC则出现在550 ℃。JM,HS及DCLR的添加可促使焦油中芳香族化合物的析出,SJC+JM与SJC+HS热解过程芳香族物质大量析出的温度区间在400~550 ℃。该研究结果为低变质粉煤的清洁转化与提质分级新技术的研究开发提供理论依据,对低变质煤的增值利用具有重要的意义。  相似文献   

14.
 为了满足惯性约束聚变(ICF)和状态方程(EOS)实验以及靶装配工艺的需要,在薄膜轧制过程中间以及轧制工艺完成以后需要对镍膜进行热处理来改善其组织结构和力学性能。对多辊轧机冷轧的方法制备的厚11 mm镍膜中间退火工艺进行了研究,根据确定的合适的退火工艺退火后继续轧制得到成品镍膜厚7 mm,表面粗糙度小于50 nm,基本满足目前状态方程实验对箔膜的要求。金相显微照片表明镍膜晶粒经500 ℃保温1 h退火由轧制前的条带状变为等轴晶;镍膜硬度经500 ℃退火后由4 GPa降低到了2.3 GPa左右;XRD衍射测试表明镍膜经500 ℃以上温度退火后,高角度的衍射峰开始出现,织构得到一定程度的改善。由此可以确定镍膜合适的中间退火温度为520 ℃保温1 h。  相似文献   

15.
用于ICF靶的空心玻璃微球的干凝胶法制备   总被引:9,自引:13,他引:9       下载免费PDF全文
 为用干凝胶法制备用于ICF靶的空心玻璃微球(HGM),研究了载气组份、温度和压力对成球过程和HGM品质的影响,优化了制备工艺参数。结果表明:提高载气中氦气的含量,有利于增加干凝胶粒子的成球率和HGM的纵横比;适当提高载气中氩气的含量,有利于提高HGM的表面质量。降低载气压力可以提高HGM的纵横比;升高载气温度可以提高干凝胶粒子成球率和HGM品质。当载气中氦气的体积分数在50%~80%,载气压力在(0.75~1.00)×105 Pa,载气温度在1 500~1 650 ℃时,干凝胶粒子的成球率较高,HGM的球形度、同心度和表面光洁度较好。制备得到了直径100~500 μm、壁厚0.5~3.0 μm的HGM,其耐压强度、抗大气侵蚀性能和表面粗糙度等指标均满足ICF物理实验要求。  相似文献   

16.
BeH2材料的制备及在ICF中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
 简述了BeH2材料的制备方法、结构形式和物理化学性质,并分析了其在惯性约束聚变(ICF)中的应用。BeH2材料主要由二叔丁基铍热解法和元素化学气相沉积法制备,其纯度(质量分数)高达99%。非晶BeH2材料的结构是一种共用氢原子作为顶点的BeH4四面体网络结构。非晶BeH2材料不仅具有铍的优点,还具有聚合物的优点,作为ICF靶可以降低瑞利-泰勒不稳定性,而且掺入高Z元素后还可以降低D-T燃料的预热。非晶BeH2材料作为烧蚀层,掺入高Z元素后可以提高激光-X光的转换效率。  相似文献   

17.
热处理温度对化学镀磁性ICF玻璃靶丸特性的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
 在300,700和1 000 ℃温度下,对化学镀Ni-P合金涂层后的磁性ICF玻璃靶丸进行热处理,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和振动样品磁强计(VSM)对热处理后化学镀ICF玻璃靶丸的结构、形貌和磁性能进行了表征。结果表明:化学镀ICF玻璃靶丸经过热处理后,Ni-P涂层晶化为晶态合金层,涂层的组成颗粒直径和磁性能随着热处理温度的升高而不断增加,可望用于磁悬浮实验研究。  相似文献   

18.
The catalytic pyrolysis of waste plastics with iron-based catalyst can produce H2 rich gas, liquid oil and carbon nanotube (CNTs) together. While the catalytic pyrolysis mechanism is still unclear, in this study, the catalytic pyrolysis of polypropylene (PP) was explored in depth, and the influence of catalyst and temperature was distinguished. The results indicated that a lower temperature led to the generation of waxes, while a higher temperature promoted the formation of aromatic hydrocarbons when plastic pyrolysis was performed without a catalyst. In addition, a large number of carbon deposits, mainly in the form of spheres, were collected when the temperature was over 800 ℃. These carbon spheres originated from the agglomeration of aromatic hydrocarbons. Once catalysts were introduced, a large amount of liquid oil was transferred into carbon deposits at both lower and higher catalytic temperatures, simultaneously, leading to more light gases releasing, like hydrogen. At a lower temperature (≤ 800 ℃), it was mainly CNTs while carbon spheres are the main solid product at higher temperatures (> 800 ℃). In addition, two different mechanisms of CNTs formation were also concluded that the base-growth model dominated the of generation CNTs at 600 °C whereas the CNTs followed the tip-growth model at 800 ℃. The results show that the optimized temperature for the catalytic process should be around 800 o℃ where approximately 35 mmol/gplastic hydrogen, 50% hydrogen efficiency and over 320 mg/gplastic carbon nanotubes (CNTs) were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号