首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
 结合高能球磨和高温高压实验技术,制备了块体TiN/TiB2纳米复合材料。通过X射线衍射和拉曼光谱对材料的微观结构进行了研究。结果表明,采用金属Ti和六方BN为原料,在球磨过程和高温高压实验过程中,TiN先于TiB2形成,球磨70 h后有少量的纳米晶TiN开始形成。在高温高压实验中,在样品腔的合成温度低于1 300 ℃时,没有TiB2出现;当温度达到1 300 ℃后,合成出了TiN和TiB2的复合材料。对所合成的块状材料的热膨胀性和导电性能进行了测试。  相似文献   

2.
To determine the effect of aluminum content on the formation of in-situ TiN in the Al–Ti–AlN system, a mixture of aluminum, titanium and aluminum nitride powders was subjected to high energy milling. Al content of the mixture was changed according to the following stoichiometric reaction: Ti+AlN+XAl→TiN+(1+X)Al. The value of X was varied from 5.35 to 19.65 based on the stoichiometric calculation of the molar mass of each component expected to result in aluminum matrix composite with TiN weights of 30%, 20% and 10%, respectively, in addition to reaction corresponding to X=0(Ti+AlN→TiN+Al). Thermodynamic factors determine that the amount of Al in the mixture plays a key role in the formation of in-situ TiN. XRD and EPMA results showed that at lower Al content (X=0, 5.35), reaction proceed through a gradual mode. By increasing Al content (X=19.65), no mechanochemical reaction occurred between Ti and AlN. Continuation of the milling process allowed acquisition of in-situ TiN in the designed compositions of AlN–TiN, Al–Ti–AlN–30%TiN, and to some extent, of Al–Ti–AlN–20%TiN. A nanocrystalline solid solution evolved by mechanical alloying (MA) was sustained for prolonged milling time. The mean TiN crystallite size obtained was 10 nm for the AlN–TiN composition. The end product milled powder after 40 h of milling time, equating to the Al–Ti–AlN–30%TiN composition was consolidated into bulk compact using the underwater shock compaction method. The milled specimens were characterized by XRD, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and microhardness testing. The sample had a uniform and fine-grained composite structure with 99% theoretical density and average microhardness of 434 HV0.1. The results confirmed the possibility of fabricating reliable bulk nanostructured materials by imposing shock compaction on submicron sized powders.  相似文献   

3.
研究了在高压条件下Ti2Al N-Al的热稳定性。X射线衍射(XRD)和扫描电镜(SEM)的实验结果表明,Ti2Al N-Al的稳定性与压力的关系较小。在不同压力(3、4和5 GPa)下,Ti2Al N-Al反应的最低温度在500~600℃之间,反应产物主要依赖于温度。900℃保温、保压20 min,Ti2Al N-Al基本反应完全,反应的最终产物主要为Al3Ti和Ti N。  相似文献   

4.
TiN/TiO2 nanoparticle photocatalyst was prepared by ball milling of TiO2 in H2O solution doped with TiN. The photocatalyst was characterized by UV–Vis diffuse reflection spectroscopy, X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Based on the results of the characterization, the mechanism of the increase in photocatalytic activity was investigated. The results show that when the amount of doped TiN is 0.15 wt%, the photocatalytic activity of the TiN/TiO2 is at its peak. Compared with TiO2, the photoabsorption wavelength range of the TiN/TiO2 photocatalyst red-shifts about 30 nm, and the photoabsorption intensity increases as well. The photocatalytic activities of the photocatalyst are higher than that of TiO2 under UV and visible light irradiation. The increase of surface Ti3+ reactive center and the extension of the photoabsorption wavelength are the main factors for the increase in the photocatalytic activity of the TiN/TiO2. Doped TiN neither changes the TiO2 crystal phase nor creates new crystal phase by ball milling.  相似文献   

5.
 本文在常压高温和高压高温条件下合成出了Nd2-xCexCuO4(x=0~0.20)系列样品,对比研究了两种不同条件下合成产物的结构特征与室温至液氮温区的导电性质。测试分析结果表明,高温高压(1.7 GPa,800 ℃,10 min)合成的样品与常压高温(1 000 ℃,10 h)烧结的样品具有相同的四方结构,但晶格常数随掺杂量变化有所不同,高压合成产物的c轴随掺杂量基本不变,而常压烧结样品c轴随掺杂量增加呈下降趋势。两种条件合成的样品在液氮温区均呈现出不同程度的半导体特征,经过一次高温淬火后处理后,高压样品的导电性质明显优于常压样品。实验结果表明,高压可以降低固相反应的合成温度,缩短反应时间,特别是高压的还原作用有利于产物导电性质的改善。  相似文献   

6.
This paper discusses the excitation, ionization and reaction mechanism of reactive cathodic arc deposition of TiN. Such arc plasmas art operated in the arc discharge type PVD apparatus. The 50 A arc is operated in N2 atmosphere of 0.13 to 26.6 Pa. The arc voltage, the electron energy distribution and the spectral intensities are measured as a function of pressure. The deposited films are analyzed by XPS. It follows from the result that (1) the N2 molecules impact with the high energy electron to be excited or ionized; (2) Ti ++ ions which are initially emitted from the cathode spot recombine with electrons and turn Ti+ ions and Ti atoms and the recombination ratio increases with increasing pressure; (3) the TiN compound is produced on the substrate surface in the ensuing process, the excited N2 are adsorbed on the substrate surface, the N 2 are dissociated to N atoms through collisions with Ti+ ions of 40-60 eV, the N atoms react with the Ti atoms to form TiN  相似文献   

7.
In this paper, we studied the effects of the modulating interfacial state, which was introduced by mechanical ball milling, on the magnetoresistance (MR) properties of Sr2FeMoO6 polycrystalline material. The X-ray diffraction analysis showed that the crystal structure of Sr2FeMoO6 polycrystalline material was not changed in the process of ball milling, but the SrMoO4 impurity phase was introduced at grain boundaries, and its quantity increased with the milling time. The results of resistance measurements at different temperatures indicated that ball milling had a very important influence on the MR properties. At due to the enhancement of the tunneling among adjacent grains by introducing the insulating SrMoO4 phase at grain boundaries, the MR was enhanced with increasing the milling time. However, at the MR decreased rapidly with the increase in milling time. This phenomenon was mainly caused by the inelastic hopping of electrons through the localized states introduced at grain boundaries.  相似文献   

8.
Influence of the process parameters like (i) sputtering gas pressure, (ii) target current, (iii) substrate bias voltage and (iv) substrate temperature of a reactive mid-frequency dual-magnetron sputtering on (a) surface defects and (b) mechanical properties of Ti/TiN multilayered films was investigated. The forming mechanisms of the observed droplets and craters were analyzed. Results showed when: (1) pressure of Ar/N2 gases PAr/N2 was at 0.31 Pa and substrate temperature was in certain range, the size and the density of the surface defects on the TiN films tended to decrease with increasing the target current and the pulsed bias voltage; (2) the optimal deposition parameters for accomplishing fewer surface defects were used, increasing the thickness of the Ti buffer layer decreased the microhardness in certain level, and the adhesion was firstly increased and then decreased as thickness reaching and/or beyond a critical value. Results also showed that selection of optimized process parameters evidently minimized the surface defects and improved the mechanical properties of the film.  相似文献   

9.
 以金属锆粉(Zr)和六方氮化硼粉(h-BN)为原料,结合高能球磨和高温高压合成技术,制备出了ZrN-ZrB2纳米复合材料。利用X射线衍射、透射电镜和拉曼光谱等测试手段,对材料的结构和合成规律进行了研究。结果表明,高能球磨过程中只合成出了ZrNx,没有出现ZrB2,从N、B原子与Zr进行固态反应的热力学和动力学方面分析了原因。利用Zr与BN粉球磨10 h后的混料,在压力为5 GPa、温度为1 300 ℃的条件下,制备出了具有高致密度的ZrN-ZrB2纳米复合材料。其维氏显微硬度(17 GPa)、热膨胀系数(7.57×10-6-1)和电阻率-温度系数(8.846×10-4-1)等材料参数的测量结果表明,ZrN-ZrB2复合材料是一种集优良的力学、热学和电学性能于一体的纳米复合材料。  相似文献   

10.
A copper nitride (Cu3N) thin film is deposited on a Si substrate by the reactive magnetron sputtering method. The XPS measurements of the composite film indicate that the Cu content in the film is increased to 80.82 at. % and the value of the Cu/N ratio to 4.2:1 by introducing 4% 112 into the reactive gas. X-ray diffraction measurements show that the film is composed of Cu3N crystallites with an anti-ReO3 structure. The effects of the increase of copper content on the field emission characteristics of the Cu3N thin film are investigated. Significant improvement in emission current density and emission repeatability could be attributed to the geometric field enhancement, caused by numerous surface nanotips, and the decrease of resistivity of the film.  相似文献   

11.
 利用球磨方法制备出Ti60Si40纳米晶混合物,研究了该混合物在不同静压力下固态反应,利用X射线衍射和电子显微镜分别研究了样品中的相组成。实验结果表明,球磨过程中生成的微量新的亚稳相可以在适当的压力和温度条件下长大,但其长大速率却随压力的增加而减小。在常压下进行相同温度和时间的热处理,则只有纳米晶的长大而没有固相反应发生。  相似文献   

12.
 研究了非晶(Fe0.99Mo0.01)78Si9B13(FMSB)合金的机械晶化过程和机制,并讨论了局域高压的作用。结果表明:非晶FMSB合金的晶化过程及其产物与球磨强度和球磨时间有密切关系,在低能球磨FMSB非晶过程中,晶化相只有α-Fe(Mo,Si)固溶体,而在高能球磨过程中,除了α-Fe(Mo,Si)固溶体结晶相之外,还分别有(Fe,Mo)3B和Fe2B相析出。其晶化机制可归因于由碰撞引起的局域高压和局域高温共同作用的结果。实验结果还表明,机械球磨不仅对非晶FMSB的常压热晶化温度有重要影响,而且对其热晶化结果亦有重要影响。  相似文献   

13.
High-quality type-Ⅱa gem diamond crystals are successfully synthesized in a NiToMn25Co5-C system by temperature gradient method (TGM) at about 5.5 GPa and 1560 K. Al and Ti/Cu are used as nitrogen getters respectively. While nitrogen getter Al or Ti/Cu is added into the synthesis system, some inclusions and caves tend to be introduced into the crystals. When Al is added into the solvent alloy, we would hardly gain high-quality type-Ⅱa diamond crystals with nitrogen concentration Nc 〈 1 ppm because of the reversible reaction of Al and N at high pressure and high temperature (HPHT). Piowever, when Ti/Cu is added into the solvent alloy, high-quality type-Ⅱa diamond crystals with Nc 〈 1 ppm can be grown by decreasing the growth rate of diamonds.  相似文献   

14.
A rise in the condensation surface temperature during film growth is a result of energy dissipation on the condensation surface. An example of energy dissipation is the dissipation of chemical reaction heat, which releases during film deposition by reactive magnetron sputtering. The monitoring of the surface temperature during TiN film deposition by reactive (Ti–in–N2) and nonreactive (TiN–in–Ar or TiN–in–N2) sputtering methods has shown that this temperature is higher in the reactive case and decreases in the (TiN–in–Ar)–(TiN–in–N2) sequence of nonreactive sputtering modifications. It has been found that the composition and crystal structure of TiN films do not depend on the growth method and are identical to those of bulk titanium nitride. Based on these results, a formation mechanism of films obtained by the above methods has been suggested. In the case of reactive sputtering, the film was supposed to grow on the condensation surface through a reaction between titanium and nitrogen atoms. In the cases of nonreactive sputtering, the film forms from TiN molecules.  相似文献   

15.
We report an efficient pumping scheme which involves a direct excitation of the upper lasing level of a four-level laser in a Nd-doped Ca3(NbGa)2-xGa3O12 (Nd:CNGG) by using a tunable Ti:sapphire, 700-920nm, cw pump source. The slope efficiency is improved from 10.5% of the traditional band pumping at 808nm to 21.8% of the direct pumping at 882nm. The influence of pumping wavelength on lasing is discussed. We present a scheme of double pumping for lasing.  相似文献   

16.
The formation of iron carbides by reactive milling of α-Fe and C powders is reported. The products formed were analyzed by Mössbauer spectroscopy and X-ray diffraction. It was found that iron carbide phases start forming after an incubation period of about 3 h depending on the ball-to-powder weight ratio (BPR). Carbide amounts increased with increasing milling time while α-Fe content decreased. Energy transfer increased with increasing BPR and high BPR resulted in an increase in the reaction rate. Although it was not possible to selectively synthesise a specific Fe x C phase, samples containing predominantly one type of carbide phase, either Hägg carbide or cementite, were successfully prepared. The formation of the different iron carbide phases is discussed within the context of the Fe–C phase diagram for non-equilibrium processes.  相似文献   

17.
利用XRD和TEM方法研究Fe42.5Al42.5Ti5B10合金在机械合金化及等温热处理过程中的结构演变及晶粒生长动力学,讨论了机械合金化合成机理和热处理过程中的晶粒生长机理.结果表明,球磨过程中Al,Ti,B原子向Fe晶格中扩散,形成Fe(Al,Ti,B)固溶体.机械合金化合成Fe(Al,Ti,B)遵循连续扩散混合机理.球磨50h后,金属Fe,Al,Ti,B已完全合金化,球磨终产物为纳米晶Fe(Al,Ti,B).球 关键词: XRD TEM 42.5Al42.5Ti5B10合金')" href="#">Fe42.5Al42.5Ti5B10合金 机械合金化  相似文献   

18.
Carbon nanotubes (CNTs) deposited by chemical vapor deposition (CVD) were treated by ball milling. The morphologies and field emission properties of the treated CNTs depending on milling time were studied. The emission turn-on field is increased, and the field emission current density is reduced, when the milling time increased from 0.5 to 3 h. The as-deposited long CNTs were cut to short CNTs (∼1 h) and micro-particles (>1 h) with increasing of the milling time. It is found that the optimized milling time is 0.5-1 h, the treated CNTs showed excellent field emission properties, such as low turn-on field, high emission current density and uniform luminescence spots distribution.  相似文献   

19.
Growth of TiN films at low temperature   总被引:1,自引:0,他引:1  
L.I. Wei 《Applied Surface Science》2007,253(17):7019-7023
Thermodynamic analysis on growth of TiN films was given. The driving force for deposition of TiN is dependent on original Ti(g)/N(g) ratio and original partial pressure of N(g). TiN films were deposited by ion beam assisted electron beam evaporation system under suitable nitrogen gas flow rate at 523 K while the density of plasma varied with diverse discharge pressure had been investigated by the Langmuir probe. TiN films were characterized by means of Fourier transform infrared absorption spectrum (FTIR), X-ray diffraction (XRD) and observed by means of atom force microscopy (AFM). The results of these measurements indicated preferential TiN(1 1 1) films were deposited on substrate of Si(1 0 0) and glass by ion beam assisted electron beam evaporation system at low temperature, and it was possible for the deposition of TiN films with a preferential orientation or more orientations if the nitrogen gas flow rate increased enough. Sand Box was used to characterize the fractal dimension of surface of TiN films. The results showed the fractal dimension was a little more than 1.7, which accorded with the model of diffusion limited aggregation (DLA), and the fractal dimension of TiN films increased with increase of the temperature of deposition.  相似文献   

20.
Milling and dispersion of multi-walled carbon nanotubes in texanol   总被引:2,自引:0,他引:2  
Rheological results were used to determine the optimum type of dispersant and its concentration for six commercial dispersants for the dispersion of multi-walled carbon nanotube (MWCNT) agglomerates in texanol. An unsaturated polycarboxylic acid copolymer (BYK P-104) exhibited the optimum performance with the lowest MWCNT slurry viscosity in texanol. The cutting and dispersion efficiencies of MWCNTs with 20 wt.% of BYK P-104 dispersant were compared using conventional ball milling and high energy milling, whereby the latter was found to be more effective. High energy milling for 2 h produced a large portion of MWCNT agglomerates smaller than 150 nm, showing a drastic increase in slurry viscosity due to the dispersion into individual CNTs. On the other hand, 120 h ball milling was required to achieve the agglomerate size of 300 nm with less viscosity increase upon milling. Decrease in the degree of MWCNT crystallinity was observed by both milling, even though 2 h high energy milling showed slightly less damage than 120 h ball milling based on XRD and Raman spectroscopy results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号