首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this article, the p-type CuBi2O4 powder was prepared by the solid-state reaction method. The pn heterojunction photocatalyst p-CuBi2O4/n-TiO2 was prepared by ball milling. The photocatalyst was characterized by X-ray powder diffraction (XRD), UV–Vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), and photoluminescence emission spectra. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic reduction of Cr2O7 2− and photocatalytic oxidation of methyl orange (MO). The results showed that the photocatalytic activity of the pn heterojunction photocatalyst p-CuBi2O4/n-TiO2 was much higher than that of TiO2 and the mixture of p-CuBi2O4n-TiO2 without ball milling under visible and UV light irradiation. The optimal percentage of doped p-CuBi2O4 is 20 wt%. Compared with pure TiO2, the photoabsorption wavelength range of the photocatalyst is extended greatly toward visible light and improves the utilization of the total spectrum. The effect of ball milling time on the photocatalytic activity of the photocatalyst was also investigated. The optimum ball milling time is 6 h. The mechanisms of influence of p-CuBi2O4 on the photocatalytic activity of p-CuBi2O4/n-TiO2 were also discussed by the pn junction principle and the valance band theory.  相似文献   

2.
Abstract

Titanium dioxide (TiO2) was doped with a nonmetalic element, boron (B), and the boron doped TiO2 (B-TiO2) was combined with polyaniline (Pani) through an in-situ polymerization technique. The photocatalytic activity of the prepared samples was monitored by the degradation of methylene blue under UV light irradiation. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to reveal the effect of boron doping on the crystalline and chemical structure of the photocatalyst, respectively. The morphological and elemental compositional characteristics of the samples were evaluated using field emission scaning electron microscopy (FE-SEM) and energy dispersive x-ray analysis. The optical band gap energy of the prepared samples was obtained by UV-Visible (UV-Vis) spectroscopy. B-TiO2 exhibited enhanced photocatalytic performance compared to the undoped photocatalyst. Furthermore, compared with TiO2 and B-TiO2, Pani/B-TiO2 displayed superior photocatalytic activity. The composite achieved almost 26% methylene blue degradation within 150?minutes. Although the boron doping enhanced the crystallinity of TiO2 slightly, it did not affect the morphology. FTIR confirmed the presence of tri-coordinated interstitial boron in the Ti–O–B bonds. The UV-Vis spectra displayed a red shift with the incorporation of the boron atoms. The incorporation of the boron atoms in the TiO2 crystal structure are suggested to promote the separation of the photoinduced electron-hole pairs, a possible reason for the enhanced photocatalytic activity. B-TiO2 and its composite with polyaniline could be considered as a promising photocatalyst to remove organic dyes from the wastewater.  相似文献   

3.
高攀  吴晶  柳清菊  周文芳 《中国物理 B》2010,19(8):87103-087103
The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on density functional theory. Highly efficient visible-light-induced nitrogen or/and praseodymium doped anatase TiO2 nanocrystal photocatalyst were synthesized by a microwave chemical method. The calculated results show that the photocatalytic activity of TiO2 can be enhanced by N doping or Pr doping, and can be further enhanced by N+Pr codoping. The band gap change of the codoping TiO2 is more obvious than that of the single ion doping, which results in the red shift of the optical absorption edges. The results are of great significance for the understanding and further development of visible-light response high activity modified TiO2 photocatalyst. The photocatalytic activity of the samples for methyl blue degradation was investigated under the irradiation of fluorescent light. The experimental results show that the codoping TiO2 photocatalytic activity is obviously higher than that of the single ion doping. The experimental results accord with the calculated results.  相似文献   

4.
The novel visible-light-activated La/I/TiO2 nanocomposition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by X-ray powder diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, transmission electron microscopy (TEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of La/I/TiO2 was evaluated by studying photodegradation of reactive blue 19 as a probe reaction under simulated sunlight irradiation. Photocatalytic experiment results showed that the maximum specific photocatalytic activity of the La/I/TiO2 photocatalyst appeared when the molar ratio of La/Ti was 2.0 at%, calcined at 350 °C for 2 h, due to the sample with good crystallization, high BET surface area and small crystal size. Under simulated sunlight irradiation, the degradation of reactive blue 19 aqueous solution reached 98.6% in 80 min, which showed La/I/TiO2 photocatalyst to be much higher photocatalytic activity compared to standard Degussa P25 photocatalyst. The higher visible light activity is due to the codoping of lanthanum and iodine.  相似文献   

5.
To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Nitrogen and carbon doping TiO2−xyNxCy films were obtained by heating the TiO2 gel in an ionized N2 gas and then were calcined at 500 °C. The TiO2−xyNxCy films have revealed an improvement over the TiO2 films under visible light (wavelength, 500 nm) in optical absorption and photocatalytic activity such as photodegradation of methyl orange. X-ray photoemission spectroscopy, infrared spectrum and UV-visible (UV-vis) spectroscopy were used to find the difference of two kinds of films. Nitrogen and carbon doped into substitutional sites of TiO2 has been proven to be indispensable for band-gap narrowing and photocatalytic activity.  相似文献   

6.
A novel copper and sulfur codoped TiO2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl2·2H2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced “red-shift” in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO2 catalyst has higher activity than undoped and Cu or S doped TiO2 catalysts.  相似文献   

7.
Activated carbon (AC) supported Zn2+–TiO2 photocatalyst was prepared by sol–gel method. The prepared samples were characterized by X-ray diffraction, scanning electron micrograph, nitrogen absorption, diffuse reflectance UV/VIS and X-ray photoelectron spectroscopy. Using toluene as a pollution target, the photocatalytic activity of photocatalyst was evaluated. The results showed that prepared photocatalyst was obviously helpful for the removal of toluene in air. The photocatalytic degradation of toluene by Zn2+–TiO2/AC reached 100% for 40 min and remained 75% after 160 min, while degradation by TiO2 was only 30%. It indicated that the photocatalytic activity of prepared photocatalyst was enhanced. It is due to Zn2+-doping increased the oxidation and reduction of hole–electron pairs, which was the important factor in heterogeneous photocatalysis.  相似文献   

8.
以钛酸四正丁酯和硝酸镧为原料, 以P123为模板剂,采用模板法合成了La掺杂型介孔TiO2光催化剂, 借助TGA-DSC、BET、XRD及UV-Vis等测试手段对样品进行了表征,并以苯酚为模型污染物考察了镧掺杂量对样品光催化活性的影响.结果表明: La掺杂介孔TiO2光催化剂孔径分布较均匀(~10 nm),比表面积可达165 m2/g.与纯介孔TiO2相比,经掺杂改性后的样品在紫外光区及可见光区的吸收显著增强,对光具有更高的利用率,La掺杂可显著提高介孔TiO2的光催化活性.  相似文献   

9.
The nanoparticles of TiO2 modified with carbon and iron were synthesized by sol-gel followed solvothermal method at low temperature. Its chemical composition and optical absorption were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence emission spectroscopy (PL), UV-vis absorption spectroscopy, and electron paramagnetic resonance (EPR). It was found that carbon and iron modification causes the absorption edge of TiO2 to shift the visible light region. Fe(III) cation could be doped into the matrix of TiO2, by which could hinder the recombination rate of excited electrons/holes. Superior photocatalytic activity of TiO2 modified with carbon and iron was observed for the decomposition of acid orange 7 (AO7) under visible light irradiation. The synergistic effects of carbon and iron in modified TiO2 nanoparticles were responsible for improving visible light photocatalytic activity.  相似文献   

10.
Natural zeolite supported Fe3+-TiO2 photocatalysts were synthesized for the sake of improving the recovery and photocatalytic efficiency of TiO2. The as-prepared materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Methyl orange was used to estimate the photocatalytic activity of the samples. The results showed that zeolite inhibited the growth of TiO2 crystallite sizes. The Fe3+ concentration played an important role on the microstructure and photocatalytic activity of the samples. The iron ions could diffuse into TiO2 lattice to the form Fe-O-Ti bond and gave TiO2 the capacity to absorb light at lower energy levels. The photocatalytic activity of the samples could be enhanced as appropriate dosages of Fe3+ were doped.  相似文献   

11.
The present work deals with the synthesis of titanium dioxide nanoparticles doped with Fe and Ce using sonochemical approach and its comparison with the conventional doping method. The prepared samples have been characterized using X-ray diffraction (XRD), FTIR, transmission electron microscopy (TEM) and UV–visible spectra (UV–vis). The effectiveness of the synthesized catalyst for the photocatalytic degradation of crystal violet dye has also been investigated considering crystal violet degradation as the model reaction. It has been observed that the catalysts prepared by sonochemical method exhibit higher photocatalytic activity as compared to the catalysts prepared by the conventional methods. Also the Ce-doped TiO2 exhibits maximum photocatalytic activity followed by Fe-doped TiO2 and the least activity was observed for only TiO2. The presence of Fe and Ce in the TiO2 structure results in a significant absorption shift towards the visible region. Detailed investigations on the degradation indicated that an optimal dosage with 0.8 mol% doping of Ce and 1.2 mol% doping of Fe in TiO2 results in higher extents of degradation. Kinetic studies also established that the photocatalytic degradation followed the pseudo first-order reaction kinetics. Overall it has been established that ultrasound assisted synthesis of doped photocatalyst significantly enhances the photocatalytic activity.  相似文献   

12.
The sol-gel route was employed to prepare a titania/silica photocatalyst co-doped with boron and ferrum. The microstructure and the optical property of the photocatalyst were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffusive reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption-desorption isotherm. The decomposition of phenol under visible light irradiation was used as probe reaction to evaluate the photocatalytic activity. The results revealed that the dopants could inhibit phase transformation of TiO2, and that there were intimate molecule-level interactions between titania and silica. The doping boron led to the response to visible light. The doping ferrum, which existed in the form of Fe2O3 and dispersed on the surface of TiO2, increased photoquantum efficiency and resulted in the enhancement of catalytic performance. The photocatalytic activity related to the annealing temperature and component. The synergistic effects of co-doping and intimate interaction between titania and silica were responsible for the increase of photoactivity.  相似文献   

13.
In this paper, the effective method for nitrogen-doped TiO2−xNx photocatalyst coated on hollow glass microbeads is described, which uses titanium tetraisopropoxide [Ti(iso-OC3H7)4] as the raw materials and gaseous ammonia as a heat treatment atmosphere. The effects of heat treatment temperature and time on the photocatalytic activity of TiO2−xNx/beads are studied. The photocatalyst is characterized by the UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis and scanning electron microscopy (SEM). The results show that when the TiO2−xNx/beads is heated at 650 °C for 5 h, the photocatalytic activity of the TiO2−xNx/beads is the best. Compared with TiO2, the photoabsorption wavelength range of nitrogen-doped TiO2−xNx red shifts of about 60 nm, and the photoabsorption intensity increases as well. The photocatalytic activity of the TiO2−xNx/beads is higher than that of the TiO2/beads under visible light irradiation. The presence of nitrogen neither influences on the transformation of anatase to rutile, nor creates new crystal phases. When the TiO2−xNx/beads is heated at 650 °C for 5 h, the amount of nitrogen-doped is 0.53 wt.% in the TiO2−xNx. As the density of TiO2−xNx/beads prepared is lower than 1.0 g/cm3, it may float on water surface and use broader sunlight spectrum directly.  相似文献   

14.
Fe3+-doped TiO2 film deposited on fly ash cenosphere (Fe-TiO2/FAC) was successfully synthesized by the sol-gel method. These fresh photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analyses (TGA). The XRD results showed that Fe element can maintain metastable anatase phase of TiO2, and effect of temperature showed rutile phase appears in 650 °C for 0.01% Fe-TiO2/FAC. The SEM analysis revealed the Fe-TiO2 films on the surface of a fly ash cenosphere with a thickness of 2 μm. The absorption threshold of Fe-TiO2/FACs shifted to a longer wavelength compared to the photocatalyst without Fe3+-doping in the UV-vis absorption spectra. The photocatalytic activity and kinetics of Fe-TiO2/FAC with varying the iron content and the calcination temperatures were investigated by measuring the photodegradation of methyl blue (MB) during visible light irradiation. Compared with TiO2/FAC and Fe3+-doped TiO2 powder (Fe-TiO2), the degradation ratio using Fe-TiO2/FAC increased by 33% and 30%, respectively, and the best calcined temperature was 450 °C and the optimum doping of Fe/Ti molar ratio was 0.01%. The Fe-TiO2/FAC particles can float in water due to the low density of FAC in favor of phase separation to recover these photocatalyst after the reaction, and the recovery test shows that calcination contributes to regaining photocatalytic activity of Fe-TiO2/FAC photocatalyst.  相似文献   

15.
The Cu-TiO2 nanoparticles with different Cu dopant content were prepared by sol-gel method. The structure of the as-prepared catalysts and the surface species of Cu-TiO2 were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectroscopy (DRS). The relationship between the photocatalytic activity and the surface species of Cu-TiO2 was revealed via the measurement of surface photovoltage spectroscopy (SPS) as well as the degradation of the rhodamine B (RhB). The experimental results suggest that the Cu-TiO2 photocatalysts with appropriate content of Cu (about 0.06 mol%) possess abundant electronic trap, which effectively inhibits the recombination of photoinduced charge carriers, improving the photocatalytic activity of TiO2. While at high Cu dopant region (>0.06 mol%), the excessive oxygen vacancies and Cu species can become the recombination centers of photoinduced electrons and holes. Meanwhile, at heavy Cu doping concentration, excessive P-type Cu2O can cover the surface of TiO2, which leads to decrease in the photocatalytic activity of photocatalyst. The photocatalytic experimental results are in good agreement with the conclusions of SPS measurements, indicating that there is a close relationship between the photocatalytic activity and the intensity of SPS spectra.  相似文献   

16.
The nitrogen doped (N-doped) titanium dioxide (TiO2) photocatalyst was prepared by the atmospheric-pressure plasma-enhanced nanoparticles synthesis (APPENS) process operated under normal temperature, i.e. the dielectric barrier discharge plasma process. The N2 carrier gas is dissociated in the AC powered nonthermal plasma environment and subsequently doped into the TiO2 photocatalyst that was capable of being induced by visible light sources. The APPENS process for producing N-doped TiO2 showed a higher film deposition rate in the range of 60–94 nm/min while consuming less power (<100 W) as compared to other plasma processes reported in literatures. And the photocatalytic activity of the N-doped TiO2 photocatalyst was higher than the commercial ST01 and P25 photocatalysts in terms of toluene removals in a continuous flow reactor. The XPS measurement data indicated that the active N doping states exhibited N 1s binding energies were centered at 400 and 402 eV instead of the TiN binding at 396 eV commonly observed in the literature. The light absorption in the visible light range for N-doped TiO2 was also confirmed by a clear red shift of the UV-visible spectra.  相似文献   

17.
The nitrogen and fluorine co-doped TiO2 (N-F-TiO2) nanoparticles of anatase crystalline structure were prepared by a facile method of (NH4)2TiF6 pyrolysis, and characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy etc. With the increase of calcination temperature, (NH4)2TiF6 decomposed into TiOF2 and NH4TiOF3 at first, and then formed anatase-type TiO2 with thin sheet morphology. H3BO3 as oxygen source can promote the formation of anatase TiO2, but decrease the F content in the N-F-TiO2 materials due to the formation of volatile BF3 during the precursor decomposition. The photocatalytic activity of the obtained N-F-TiO2 samples was evaluated by the methylene blue degradation under visible light, and all the samples exhibited much higher photocatalytic activity than P25. Moreover, the merits and disadvantages of this proposed method to prepare doped TiO2 are discussed.  相似文献   

18.
The photocatalyst of permeable glass membrane/TiO2 doped with Co (permeable glass membrane/TiO2 doped with Co) is prepared by the sol-gel method. The morphology and phase of the samples are determined by the field emission scanning electron microscopy (FESEM) and x-ray diffraction experiment, respectively. The photo- catalytic results show that the photocatalyst is sensitive to the visible light and exhibits excellent photocatalytic activity of photodegradation methylene blue. The photocatalytic mechanism is also discussed.  相似文献   

19.
Pd-modified carbon fibers (CFs) are obtained by a facile oxidation-reduction method and then dip-coated in a sol-gel of titanium dioxide (TiO2) to form supported TiO2/Pd-CF photocatalysts. The morphology of the Pd-modified CFs and the amount Pd deposited are characterized by field emission scanning electron microscopy and atomic absorption spectrometry, respectively. X-ray diffraction is used to investigate the crystal structures of the TiO2 photocatalyst. Acid orange II is used as a model contaminant to evaluate the photocatalytic properties of the photocatalyst under UV irradiation. TiO2/Pd-CF exhibits higher catalytic activity than TiO2/CF towards the degradation of acid orange II. Optimum photocatalytic performance and support properties are achieved when the Pd particle loading is about 10.8 mg/g.  相似文献   

20.
Titanium isopropoxide, ammonium carbonate and nickelous nitrate were used as the sources of titanium, nitrogen, and nickel to prepare titania photocatalyst co-doped with nitrogen and nickel by means of the modified sol-gel method. The photocatalyst was characterized by X-ray diffraction (XRD), UV-vis diffusive reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). The prepared N-Ni co-doped photocatalyst showed optical absorption in the visible light area and exhibited excellent photocatalytic ability for the degradation of formaldehyde under visible light irradiation. The effects of annealing temperature and component on the phase composition and photocatalytic activity were investigated. The results demonstrated that nitrogen atoms was weaved into the structure of titania and led to the response to visible light. However, nickel atoms existed in the form of Ni2O3, dispersed on the surface of TiO2, suppressed the recombination of photo-induced electron-hole pairs, raised the photo quantum efficiency, and led to the enhancement of photocatalytic performance. The increase of photoactivity was attributed to the synergistic effects of co-doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号