首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
稳定化氧化锆的晶界导电模型   总被引:8,自引:0,他引:8       下载免费PDF全文
郭新 《物理学报》1998,47(8):1332-1338
晶界空间电荷层在高纯的稳定化ZrO2的晶界电阻中起着重要作用,以此为基础,提出了一个稳定化ZrO2的晶界导电模型,根据这个模型分析了Ca,Y和Al的晶界偏聚对稳定化ZrO2的晶界导电性的影响,并同时分析了被广泛应用的以Bauerle等效电路为基础的晶界电阻测量方法的局限性,以及一些晶界性能表征参量的物理意义及欠妥之处. 关键词:  相似文献   

2.
系统地模拟计算了不同方位四方相ZrO2(T)椭球片分别在拉、压、剪应力诱导下发生ZrO2(T)→ZrO2(M)马氏体相变时系统应变能的变化.并用能量极小准则确定了有利的形核方位.结果表明相变中伴随较大的剪切变形将使马氏体形核呈现明显的择优取向;不同应力场诱导相变的临界应力相差很大. 关键词:  相似文献   

3.
纳米晶ZrO2:Dy3+的光致发光和能量传递性质   总被引:1,自引:0,他引:1  
周巍  吕树臣 《发光学报》2008,29(1):176-181
研究了Dy3+离子掺杂的ZrO2纳米粉体的光致发光性质。观测到Dy3+离子的室温强特征发射和浓度猝灭现象以及基质ZrO2与Dy3+离子之间的能量传递过程。发现了煅烧温度对样品的晶相有明显的影响,随着煅烧温度的变化,晶相也随之改变。晶相的改变使样品的荧光发射产生较大的差异,并观测到两个发射中心。通过对荧光强度与激活离子Dy3+离子浓度的关系研究发现,Dy3+离子在纳米ZrO2基质中存在浓度猝灭现象,最佳掺杂浓度取决于ZrO2基质的晶相,不同晶相导致不同的猝灭浓度,当基质晶相表现为四方相时,猝灭浓度为0.5%,而基质晶相为混合相时,猝灭浓度为1%。能量传递也依赖于样品的晶相。当煅烧温度为950℃时能量传递效果最好,并且从微观结构上给出了解释基质与Dy3+离子之间的能量传递的模型。  相似文献   

4.
陈东阁  唐新桂  贾振华  伍君博  熊惠芳 《物理学报》2011,60(12):127701-127701
采用传统的固相反应法,在1400–1500 ℃下烧结,制备得到Al2O3-Y2O3-ZrO2三相复合陶瓷.样品的结构、形貌和电性能分别用X射线衍射(XRD)、扫描电子显微镜(SEM)及介电谱表征.XRD表明此三相复合体系无其他杂相,加入Y2O3及ZrO2后使得Al2O3成瓷温度降低;SEM表明此体系晶粒直径为200–500 nm,并且样品随烧结温度的升高而变得更加致密,晶界更加清晰;介电损耗谱中出现峰值弛豫现象,根据Cole-Cole复阻抗谱得出其为非德拜弛豫. 关键词: 2O3-Y2O3-ZrO2三相陶瓷')" href="#">Al2O3-Y2O3-ZrO2三相陶瓷 介电弛豫 阻抗谱 热导率  相似文献   

5.
通过固相反应法制备了Er3+/Yb3+共掺杂ZrO2-Al2O3粉末的样品,并对样品在980nm激光激发下的上转换发光特性进行了研究.从发射光谱可以发现,在可见光范围内有3个强的发光带,一个位于654nm附近的红光带和两个分别位于545nm、525nm附近的绿光带,分别对应于Er3+离子的以下辐射跃迁:4F9/24I15/24S3/24I15/22H11/24I15/2.其中又以Er3+离子的4F9/24I15/2跃迁产生的红色荧光辐射最强.对其上转换发光机制进行了分析,发现这三个发光过程都是双光子过程.对样品粉末进行了XRD检测,发现ZrO2主要以立方相为主,并且计算得到了这种立方结构的晶格常数.Al2O3固溶于ZrO2中,Al3+嵌入ZrO2后产生氧空位,导致ZrO2晶体的对称性降低,这种结构变化更有利于提高上转换效率,即上转换发光强度增强. 关键词: 3+/Yb3+')" href="#">Er3+/Yb3+ 上转换 2-Al2O3')" href="#">ZrO2-Al2O3 荧光 稀土  相似文献   

6.
Bi,Sb合金化对AZ91镁合金组织、性能影响机理研究   总被引:12,自引:0,他引:12       下载免费PDF全文
张国英  张辉  方戈亮  李昱材 《物理学报》2005,54(11):5288-5292
利用大角重位点阵模型建立了AZ91镁合金α相[0001]对称倾斜晶界原子结构模型,应用实空间的连分数方法计算了Mg合金的总结构能,合金元素引起的环境敏感镶嵌能及原子间相互作用能,讨论了主要合金元素Al及Bi,Sb在AZ91中的合金化行为.计算结果表明,Al,Bi,Sb固溶于α相内或晶界区使总结构能都降低,起到固溶强化作用;合金元素在AZ91α相内趋于均匀分布,在晶界区易占位于三角椎上部.AZ91镁合金中加入Bi或Sb时,Bi或Sb比Al容易偏聚于晶界,从而抑制了Al在晶界的偏聚,促进基体中连续的Mg17Al12相的析出,提高AZ91合金室温性能; AZ91合金中(α相内和晶界区)主要合金元素Al和微加元素Bi,Sb都能够形成有序相Mg17Al12,Mg3Bi2或Mg3Sb2,且在晶界区形成的量大.Bi,Sb加入AZ91合金中,由于Bi,Sb抑制Al在晶界的偏聚,晶界区主要析出相为Mg3Bi2或Mg3Sb2,提高镁合金高温性能. 关键词: 电子理论 合金化 晶界偏聚 镁合组织与性能  相似文献   

7.
本文研究了Al86-xFe14+x(x=0,2,4,6,8.5)准晶相合金的M?ssbauer谱,结果表明对x=0的Al86Fe14合金中以decagonal准晶相为主,谱拟合结果为两套面积积分比为1.69,近于黄金分割的亚谱组成,支持了准晶相为两种“Penrose”多面体组成的观点。当x增加时,出现的晶态含量增加;x=8.5时,几乎全部为晶态Al3Fe相。 关键词:  相似文献   

8.
陈志雄  黄卓和  何爱琴  石滨 《物理学报》1994,43(6):1035-1040
在通常的ZnO-Bi23-Sb23系电压敏陶瓷中,加入能构成压敏特性的钡添加剂,发现除已知的Bi23和Zn2.33Sb0.674晶界相以外,还出现新的晶界相,分析表明是固溶有微量其它成分的偏锑酸钡(BaSb26)晶相。同时还发现,BaSb2关键词:  相似文献   

9.
研究了SND6800球磨剂对纳米ZrO2水悬浮液性质的影响。结果表明。粒径小于15nm ZrO2在SND6800球磨剂的水相中球磨2h制备的悬浮液,可稳定存在14天。SND6800球磨剂与ZrO2的质量比为3.5:100,悬浮液的吸光度较小、表面张力较大、黏度较小、沉降率接近最低值。SND6800球磨剂的含量对悬浮液的密度和pH值影响不大。  相似文献   

10.
基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数   总被引:2,自引:0,他引:2       下载免费PDF全文
梁丽萍  郝建英  秦梅  郑建军 《物理学报》2008,57(12):7906-7911
基于溶胶凝胶ZrO2薄膜的紫外/可见/近红外透射实验光谱,采用Swanepoel方法结合Wemple-DiDomenico色散模型,方便地导出了ZrO2薄膜在200—1200nm波长范围内的光学常数,包括折射率、色散常数、膜层厚度、吸收系数及能量带隙.研究发现,溶胶凝胶ZrO2薄膜具有高折射率(1.63—1.93,测试波长为632.8nm)、低吸收和直接能量带隙(4.97—5.63eV) 等光学特性,而且其光学常数对薄膜制备过程中的重要工艺 关键词: 光学常数 Swanepoel方法 2薄膜')" href="#">ZrO2薄膜 热处理  相似文献   

11.
《Solid State Ionics》2006,177(13-14):1227-1235
Both doped zirconia and ceria have been widely recognized as promising electrolytes in solid oxide fuel cells (SOFC). Total conductivity is an important parameter to evaluate solid electrolytes. It is well know that the contribution to the total conductivity by grain boundaries is especially pronounced for SiO2-contaminated electrolytes. In this study, we report on the different conduction behaviors of grain boundaries (GB) found in SiO2-containing (impure) 8YSZ (8 mol% Y2O3-doped ZrO2) and CGO20 (10 mol% Gd2O3-doped CeO2) ceramics. In the grain size range (∼ 0.5–10 μm) studied, the GB conductivity of impure CGO20 ceramics constantly decreases with increasing grain size, in contrast to that observed in impure 8YSZ electrolytes whose GB conductivity increases almost linearly with grain size. It is also found that the variation in GB conductivity versus grain size is different from case to case, depending on the sintering/annealing conditions used to fabricate the ceramics. Two mechanisms were proposed to explain the GB behaviors of the impure 8YSZ and CGO20 ceramics. For doped ceria, the GB phases are supposed to be inert, which do not react with or dissolve into the matrix. Increasing sintering temperature leads to not only grain growth but also change in viscosity and wetting nature of the GB phases. These two factors promote further propagation of the GB phases along the grain boundaries, leading to an increased GB coverage fraction. For doped zirconia, however, the major factor dominating the GB conduction is the further dissolution of SiO2 into zirconia lattice as a result of increase in sintering temperature or/and time. In addition, we will also evaluate and discuss the validities of the three models that are widely used to analyze the GB conduction in solid electrolytes.  相似文献   

12.
NASICON dense ceramics were obtained from solid state reaction between SiO2, Na3PO4·12H2O and two different types of zirconia: monoclinic ZrO2 and the yttria-doped tetragonal phase (ZrO2)0.97(Y2O3)0.03. Higher temperatures were needed to obtain dense samples of the yttrium free composition (1265 °C). The electrical conductivity, at room temperature, of the yttria-doped samples sintered at 1230 °C (0.20 S/m) is significantly higher than the value obtained with the material prepared from pure ZrO2. The impedance spectra show that the differences in conductivity are predominantly due to the higher grain boundary resistance of the undoped ceramics, probably due to formation of monoclinic zirconia and glassy phases along the grain boundary. Further improvement of the electrical conductivity could be achieved after optimization of the grain size and density of grain boundaries. A maximum conductivity value of about 0.27 S/m at room temperature was obtained with the yttria-doped samples sintered at 1220 °C for 40 h. Yttria-doped and undoped ceramics were tested as Na+ potentiometric sensors. The detection limit of the yttria-doped sample (10−4 mol/l) was one order of magnitude lower than the obtained with the undoped material. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16 – 22, 2001.  相似文献   

13.
The chemical reaction between SiO2 and tetragonal zirconia polycrystal (TZP) was directly observed using a TEM in-situ heating technique in order to understand the behavior of SiO2 in TZP at high temperatures. Their dynamic interaction was recorded up to about 1400°C using a CCD camera-video system connected to the TEM. Most of SiO2 phase dissolved into the ZrO2 grains above 1300°C. On the other hand, during cooling from the high temperature to around 400°C, amorphous SiO2 reprecipitated from the surface of ZrO2 grains and formed a thin layer around the ZrO2 grains. This result agrees well with the fact that silicon segregates in the vicinity of grain boundaries in SiO2-doped TZP. In order to confirm the grain boundary segregation at high temperatures, we investigated grain boundaries in quenched specimens by high resolution electron microscopy (HREM), energy dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS). It was found that no amorphous phase was present between two adjacent grains in the quenched samples. EDS analysis revealed that silicon segregated at the grain boundaries and that the segregation layer was wider than that in as-sintered specimens. The electron energy loss near edge structure (ELNES) of O K-edge was measured from both grain boundary and grain interior in quenched specimen, and their spectra were interpreted by a first principles molecular-orbital (MO) calculation using the discrete-variational (DV)-X method.  相似文献   

14.
The solid state diffusion-controlled growth of the phases is studied for the Au–Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.  相似文献   

15.
The nano-sized ZrO2-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO2 particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO2 particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO2 particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %.  相似文献   

16.
The ion conductivity, crystal structure, and multifractal parameters of the sections of grain boundaries in CuCr1?x V x S2 superionic conductors with 0 ≤ x ≤ 0.3 have been investigated. It is established that an increase in the surface area of grain boundaries and complication of their shape in such compounds facilitate ion transport. The effect of crystal structure peculiarities on the grain structure of these compounds has been revealed.  相似文献   

17.
Semiquantitative Auger Electron Spectroscopy (AES) on pure monophasic (ZrO2)0.83(YO1.5)0.17 was used to determine the chemical composition of the grain boundaries. Grain boundary enrichment with Y was observed with an enrichment factor of about 1.5. The difference in activation energy of the ionic conductivity of the grain boundary compared with the bulk can be explained by the Y segregation.When Bi2O3 is introduced into this material and second phase appears along the grain boundaries of the cubic main phase. Energy dispersive X-ray analysis (EDS) on a scanning transmission electron microscope (STEM) shows an enrichment of bismuth at the grain boundaries of this second phase.  相似文献   

18.
A systematic study of grain boundaries with an elongated grain morphology in TiO2-doped polycrystalline Al2O3 materials with SiO2 impurities is reported in this paper. Over 20 grain boundaries, all having common (0001) basal plane surface on one side, were investigated by using HRTEM and analytical TEM. A few of them were basal plane twin boundaries or other non-wetting boundaries, and the majority of grain boundaries were covered by amorphous phases, either as continuous films or with small pockets bounded by surface facets. Si and Ti were segregated to all boundaries, however, two categories of segregation were observed. Excesses of both segregants were between 1.0–4.0 atom/nm2 at special and non-wetting boundaries, while they were in the range of 7.0–30 atom/nm2 at boundaries with amorphous phases. A variation of amorphous film thickness was also observed, which has a clear relation with Si excess level while Ti excess remained at the same level. This observation suggests that the amorphous phases were primarily made of SiO2 but Ti segregants were attached to grain surfaces. The variation in thickness of SiO2-based film is strongly related to the surface structure of anisotropic Al2O3 grains.  相似文献   

19.
This article focuses on the phase transformation of zirconia (ZrO2) nanoparticles produced from zircon using a bottom-up approach. The influence of mechanical milling and thermal annealing on crystalline phase transformation of ZrO2 nanoparticles was explored. It was found that the iron oxide, as an inherent impurity present in ZrO2 nanoparticles, produced from zircon stabilises the cubic phase after calcination at 600°C. The stabilised cubic phase of ZrO2 nanoparticles was disappeared and transformed into partial tetragonal and monoclinic phases after mechanical milling. The phase transformation occurred on account of the crystal defect induced by high-energy mechanical milling. The destabilisation of cubic phase into monoclinic phase was observed after the thermal annealing of ZrO2 nanoparticles at 1000°C. The phase transitions observed are correlated to the exclusion of iron oxide from the zirconia crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号