首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
本文利用双色共振双光子电离和质量分辨阈值电离光谱技术,研究了对氯苯腈分子第一电子激发态S1和离子基态D0的振动特征,确定了对氯苯腈分子S1←S0电子跃迁的激发能为35818±2 cm–1,精确的绝热电离能为76846±5 cm–1.对氯苯腈分子35Cl和37Cl两种同位素有相同的激发能和电离能以及相似的振动特征.采用高精度密度泛函方法,计算了对氯苯腈分子在中性基态S0、第一电子激发态S1、离子基态D0的结构参数和振动频率,分析了电子激发和电离过程中对氯苯腈分子结构和振动频率的变化,并对激发态和离子基态的振动光谱进行了归属,振动光谱上的活性振动大多数是苯环平面内的弯曲振动.通过比较对氯苯酚、对氯苯胺、对氯苯甲醚、对氯苯腈与苯酚、苯胺、苯甲醚、苯腈分子的跃迁能,分析了取代基Cl原子与苯环之间的相互作用及其对分子跃迁能的影响.  相似文献   

2.
HNO分子基态的结构与解析势能函数研究   总被引:1,自引:0,他引:1       下载免费PDF全文
赵俊  曾晖  朱正和 《物理学报》2011,60(11):113102-113102
应用群论及原子分子反应静力学的方法, 导出了HNO分子基态电子态和合理的离解极限.利用优选出的密度泛函理论B3LYP方法结合6-311G **优化计算了HNO分子基态的平衡结构和谐振频率.计算结果表明基态HNO分子稳定态为CS构型,电子组态为X1A',平衡核间距分别为RH-N=0.1065 nm,RN-O=0.1200 nm,键角∠H-N-O=108.60°,离解能De=15.379 eV.基态简正振动频率分别为:弯曲振动频率ν1=1575.6351 cm-1,对称伸缩振动频率ν2=1673.2890 cm-1,反对称伸缩振动频率ν3=2837.7856 cm-1.在此基础上,应用多体项展式理论导出了基态HNO分子的全空间解析势能函数,该势能函数等值势能图准确再现了HNO分子平衡结构和离解能. 关键词: 势能函数 光谱常数 密度泛函方法  相似文献   

3.
利用一束波长为36055nm的激光,通过(3+1)共振多光子电离方法制备纯净的且处于X2Π1/2,3/2(000)态的N2O+离子,用另一束激光激发所制备的离子到第一电子激发态A2Σ+的不同振动能级,然后解离,通过检测解离碎片NO+强度随光解光波长的变化,得到了转动分辨的N2 关键词: 2O+离子A2Σ+电子态')" href="#">N2O+离子A2Σ+电子态 共振增强多光子电离 光解碎片激发光谱 光谱常数  相似文献   

4.
应用舍Davidson修正的多参考组态相互作用(MRCI)方法,在aug-cc-pVTZ基组水平上对HF基态及最低的多个单重和三重电子激发态进行了势能扫描计算.结合群论原理及分子的离解极限,分析了电子态势能曲线的特征,得出激发态B1S+对应的离解极限为H++F-1S).基于势能曲线,数值求解核运动的径向Schrodinge方程,得到J=0时束缚电子态X1S+,B1S+,C1P和D1S+的振动能级和转动常数,继而进行数据拟合得到电子态的光谱常数,基态X1S+e=4146.94 cm-1eze=88.08 cm-1,Be=21.22 cm-1,a=0.785 cm-1;B1S+态:ωe=1131.37 cm-1exe=17.28 cm-1,Be=3.96 cm-1,ae=0.0215 cm-1,C1P态:ωe=2696.37 cm-1exe=73.43 cm-1,Be=15.91 cm-1,ae=0.776 cm-1,D1S+态:ωe=3104.22 cm-1exe=118.92 cm-1,Be=17.25 cm-1,ae=0.992 cm-1,拟合结果与实验值吻合的较好.  相似文献   

5.
张季  张德明  王迪  张庆礼  孙敦陆  殷绍唐 《物理学报》2013,62(23):237802-237802
本文通过分析不同几何配置下的偏振拉曼光谱对非线性光学晶体的晶格振动模式进行了研究. 首先根据因子群分析,将晶体的振动模按晶体对称群的不可约表示进行分类,其次测量了晶体在10–1600 cm-1范围内,不同几何配置下的偏振拉曼光谱,并在此基础上指认了晶体的晶格振动模式. 300 cm-1以下的振动峰,归结为晶体的外振动,来自[BiO6],[ZnO4],[BO4]和[BO3]原子基团的平动和转动;300cm-1以上为晶体的内振动,主要与Bi-O,和Zn-O键振动有关. 晶体拉曼光谱中最高振动频率达到1407 cm-1,被指认为[BO3]三角形中B-O键的伸缩振动,体现了[BO3]基团中高的电子非局域化程度. 关键词: 2ZnOB2O6单晶')" href="#">Bi2ZnOB2O6单晶 偏振拉曼光谱 振动模式  相似文献   

6.
龙精明  王华胜  Kvaran ágúst 《物理学报》2013,62(16):163302-163302
通过共振多光子电离-飞行时间法, 记录了氯化氢分子在84800-85700 cm-1范围内, F1Δ2 (v’=1) 里德堡态以及V1+ (v’=13, 14) 离子对态的电离产物H+, 35Cl+, H35Cl+ 及其同位素的光谱数据. 由于受离子对态V1+ 的作用, F1Δ2 (v’=1)态呈现出明显的近共振相互作用特性. 为了分析F1Δ2V1+态之间存在的光谱微扰, 基于光解离电离通道的分析, 并针对F1Δ2 (v’=1)态离子信号比的变化, 将离子信号二能级作用模型优化到三能级的作用模型, 计算得到了微扰强度值为0.6 cm-1, 预解离系数γ为0.025. 此外, 对于F1Δ2 (v’=1) 与V1+ (v’=13, 14)态的三个振动能级的光谱峰位置, 采用光谱解微扰法拟合, 同样得到了类似的微扰强度和去微扰后的各光谱参数. 研究表明, 激发至F1Δ2 (v’=1)态得到的H+, Cl+ 离子主要是该态通过与离子对态耦合作用而产生, 而F1Δ2 (v’=1) 态光谱位置偏移不仅受离子对态而且还受其他里德堡态作用的影响. 同时, 非零γ 值证实了F1Δ2态预解离的存在. 关键词: 光解离电离 里德堡态 离子对态 光谱微扰  相似文献   

7.
搭建了飞秒时间分辨受激拉曼光谱(FSRS)装置,并用于研究全反式β-胡萝卜素单重电子激发态超快内转换和振动弛豫过程.基于三脉冲“抽运-探测”方案搭建的时间分辨受激拉曼光谱装置同时实现了150fs的时间分辨率和23.7cm-1的光谱分辨率,光谱检测范围为300—4000cm-1.对全反式β-胡萝卜素电子激发态的飞秒时间分辨拉曼光谱研究表明,β-胡萝卜素被激发到S2态后,经由寿命约为0.3ps的中间态SX态实 关键词: 飞秒时间分辨拉曼光谱 β-胡萝卜素 激发态内转换 振动弛豫  相似文献   

8.
利用激光冷却俘获技术在双暗磁光阱中获得高密度的超冷铷原子和铯原子,通过光缔合方法制备超冷铷铯极性分子.采用共振增强双光子电离技术探测基三重态a3+的铷铯分子,产率约为104/s.通过改变缔合光频率,获得(2)0+,(3)0-,(2)0-等分子态的高分辨振转光谱,拟合得到相应的转动常数分别为0.00349 cm-1,0.00649 cm-1,0.00372 cm-1.  相似文献   

9.
本文利用反应显微成像技术(reaction microscope)研究了54 eV电子入射甲烷分子导致的电离解离过程,详细分析了电离解离产生的CH+2,CH+,C+离子碎片的动能分布情况.实验结果表明,该入射能量下产生CH+2,CH+,C+离子碎片主要贡献来自2a1内价轨道电子的直接电离过程产生的离子态(2a< 关键词: 反应显微成像谱仪 电离解离 能量沉积 动能分布  相似文献   

10.
本文报道草酰氯C2O2Cl2在358—372.5nm范围的激光诱导荧光(LIF)激发谱。对60多条振动谱带进行了归属,其中24条是吸收光谱中没有的。由振动结构得到C2O2Cl2分子在X基态和?激发态的部分振动频率,其中v"7=84cm-1和v'7=164cm-1是新的数据。对401振动带的转动结构的分析给出转动常数A=0.190cm-1,B=0.114cm-1,C=0.048cm-1关键词:  相似文献   

11.
The CF(X2Π) radical has been re-investigated with vacuum ultraviolet photoelectron spectroscopy. Two bands were observed and assigned to the ionisations CF+(X1Σ+)←CF(X2Π) and CF+(a3Π)← CF(X2Π). The first band, which has been observed previously, has an adiabatic ionisation energy of (9.11±0.02) eV and a vertical ionisation energy of (9.55±0.02) eV. For the second band, three vibrational components were observed with the first, the most intense, at an ionisation energy of (13.94±0.02) eV. Analysis of the vibrational structure in the two observed bands allowed ωe and re to be determined as 1810±30 cm−1 and 1.154±0.005 Å, respectively for the first ionic state, CF+(X1Σ+), and 1614±30 cm−1 and 1.213±0.005 Å, respectively for the second ionic state, CF+(a3Π). Comparison of the ionisation energies and spectroscopic constants obtained has been made with values obtained from recent multi-reference configuration interaction calculations.  相似文献   

12.
Abstract

Fourier transform infrared (4000-200 cm1) and Raman (3500-50 cm?1) spectra are reported for metal(II) halide 3,5-lutidine (3,5-dimethylpyridine) complexes of the following stoichiometries: M(3,5L)4X2 M=Co or Ni, X=C1 or Br; M=Mn or Cu, X=Br; M=Cd, X=I; M(3,5L)3X2 M=Fe, X=C1; M=Cu, X=Br; Hg(3,5L) X2 X=C1 or Br.

Vibrational assignments are given for all the observed bands. Some structure- spectra correlations are found. For a given series of isomorphous complexes the sum of the difference between the liquid and ligand values of the vibrational modes of 3,5-lutidine is found to increase in the order of the second ionization potentials of the metals. The frequency shifts are also found to depend on the halogen.  相似文献   

13.
The Raman and infrared spectra of fac ‐tris(2‐phenylpyridinato‐N,C2′)iridium(III), Ir(ppy)3 and surface‐enhanced resonance Raman spectra of bis(2‐phenyl pyridinato‐) (2,2′bipyridine) iridium (III), [Ir(ppy)2 (bpy)]+ cation were recorded in the wavenumber range 150–1700 cm−1, and complete vibrational analyses of Ir(ppy)3 and [Ir(ppy)2 (bpy)]+ were performed. Most of the vibrational wavenumbers were calculated with density‐functional theory agree with experimental data. On the basis of the results of calculation and comparison of the spectra of both complexes and their analogue [Ru(bpy)3]2+, we assign the vibrational wavenumbers for metal–ligand modes; metal–ligand stretching wavenumbers are 277/307 and 261/236 cm−1 for Ir(ppy)3, and 311/324, 257/270, 199/245 cm−1 for [Ir(ppy)2 bpy]+. Surface‐enhanced Raman scattering spectra of [Ir(ppy)2 bpy]2+ were measured at two wavelengths on the red and blue edges of the low‐energy metal‐to‐ligand charge‐transfer band. According to the enhanced Raman intensities for the vibrational modes of both ligands ppy and bpy, the unresolved charge‐transfer band is deduced to consist of charge‐transfer transitions from the triplet metal to both ligands ppy and bpy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The Raman and infrared active long wavelength phonons of a GaS single crystal were studied at different temperatures in the 10–600 cm?1 range. Properly polarized Raman spectra could be obtained with the 4880 Å exciting line and the previous assignment of the E1g modes controversed recently could be confirmed. Infrared spectra were recorded in the 30–600 cm?1 region. The vibrational frequencies of the crystal were also calculated using a method developed by Wieting and six new frequencies corresponding to infrared and Raman inactive modes have been proposed.We have observed that the degree of leakage of scattered intensity in unallowed polarizations increases when the wavelength of the exciting line moves off the exciton absorption front. The phonon at 74 cm?1 was particularly sensitive and the question of the antiresonant behaviour of this compound is raised.  相似文献   

16.
张秀荣  康张李  郭文录 《中国物理 B》2011,20(10):103601-103601
WnC0,± (n=1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within the same size, and constituted by substituting a C atom for one W atom in the structures of Wn+1 clusters. The natural bond orbital (NBO) charge analyses indicate that the direction of electron transfer is from the W atom to the 2p orbital of the C atom. In addition, the calculated infrared spectra of the WnC0,± (n=2-6) clusters manifest that the vibrational frequencies of neutral, anionic and cationic clusters are similar in a range of 80 cm-1-864 cm-1. The high frequency, strong peak modes are found to be an almost stretched deformation of the carbide atom. Finally, the polarizabilities of WnC0,± (n=1-6) clusters are also discussed.  相似文献   

17.
Frank J. Owens 《Molecular physics》2018,116(10):1275-1279
While large scale fabrication of graphene nanoribbons remains a challenge, there exist materials which can be fabricated in quantities such as hexabenzobenzene,HBZB, (C24H12) and which have a two-dimensional (2D) carbon structure similar to graphene nanostructures. Using a 632 nm laser, no Raman spectra could be obtained from the solid material because of a strong luminescence produced by the laser. However, surface-enhanced Raman spectroscopy enabled the measurement of some of the Raman active modes. The G and D modes, which are characteristic fingerprints of a 2D graphene structure, were observed at 1331 and 1600 cm?1, respectively. Density functional theory at the B3LYP/6-31G* level was used to calculate the minimum energy structure and the Raman active vibrational frequencies of HBZB. The calculated minimum energy structure was 2D having D6h symmetry in agreement with the experimental structure in the liquid phase. The calculated frequencies were in good agreement with the measured values.  相似文献   

18.
Infrared reflection spectra of single crystals of BeSO4·4H2O and BeSO4·4D2O have been obtained in polarized light at 300°K and at 14°K in the region between 4000 cm?1 and 300 cm?1. By a Kronig-Kramers analysis, the frequencies of the infrared active transitions have been calculated. These transitions are attributed to internal vibrations of the water molecules and sulfate ions and, in the region between 1000 cm?1 and 300 cm?1, especially to internal and external vibrations of the tetrahedral Be++·4aqu-complexes. The vibrational modes of these complexes consist of a superposition of translational and librational modes of the water molecules and translational modes of the central Be++-ion. The vibrational frequencies and normal modes of this complex have been calculated in a central-force model, and force-constants have been determined by fitting the calculated frequencies to the observed spectra. The calculations have shown that the modes, which comprise mainly translational motions of the water molecules, are strongly coupled with librational motions of the water molecules. On the other hand, there exist pure librational modes with practically no admixture of translational motions. The optimum sets of force constants for the BeSO4·4H2O crystal and the BeSO4·4D2O crystal differ in a manner which can be understood under the assumption that the dimensions of the Be(D2O)4 complex are about 0.1 Å larger than those of the Be(H2O)4 complex. Some arguments supporting this conclusion will be discussed.  相似文献   

19.
In this work, the experimental and theoretical UV, NMR and vibrational spectra of 2-chloro-6-methylaniline (2-Cl-6-MA, C7H8NCl) were studied. The ultraviolet absorption spectra of compound that dissolved in ethanol were examined in the range of 200–400 nm. The 1H, 13C and DEPT NMR spectra of the compound were recorded. FT-IR and FT-Raman spectra of 2-Cl-6-MA in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies were found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the calculated NMR chemical shifts and absorption wavelengths with the experimental values revealed that DFT method produces good results.  相似文献   

20.
Coherent Stokes and anti-Stokes Raman scattering are used to study the ν1 and ν2 spectral band profiles of UF6 and SF6. Most of the observed SF6 “hot” bands are assigned, leading to evaluations of the anharmonicity constants Xij: X12 = ?(2.80 ± 0.30) cm?1, X14 = ?(1.00 ± 0.15) cm?1, X15 = ?(1.00 ± 0.15) cm?1. For UF6, a tentative assignment of the “hot” bands is made: X12 = ?(1.80 ± 0.30) cm?1, X13 = ?(1.60 ± 0.30) cm?1, X14 = ?(0.20 ± 0.10) cm?1, X15 = ?(0.25 ± 0.10) cm?1, and X16 = ?(0.10 ± 0.05) cm?1. Parameters such as the vibration-rotation coupling constants are determined. For SF6: α = (7 ± 2) × 10?5 cm?1 for the ν2 band and α = ?(1.02 ± 0.01) 10?4 cm?1 for the ν1 band. The calculated spectral profiles of the coherent Stokes or anti-Stokes spectra, which are in good agreement with experimental results, give values for the resonant and nonresonant parts of the susceptibility in both molecules. They also show, in some cases, the influence of neighboring combination bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号