首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A photonic crystal fibre (PCF) with zero-dispersion wavelength around 800 nm is designed and fabricated. Simulated results show that the zero-dispersion wavelength of fundamental mode for this PCF is at 826nm, and phase-matched four-wave mixing can be achieved in fundamental mode. Using 20ors Ti:sapphire laser with central wavelength at 810nm as pump, the anti-Stokes line around 610hm & generated efficiently. The output signal has a Gaussian-like profile, which indicates that the anti-Stokes signal is in the fundamental mode of the PCF. The energy of anti-Stokes signal is higher than that of residual pump laser and the maximum ratio of the anti-Stokes signal to the pump component in the output spectrum is estimated to be 1.2.  相似文献   

2.
In order to meet the requirements of the synchrotron radiation users, a fully coherent VUV free electron laser (FEL) has been preliminarily designed. One important goal of this design is that the radiation wavelength can be easily tuned in a broad range (70 170 nm). In the light of the users' demand and our actual conditions, the self-seeding scheme is adopted for this proposal. Firstly, we attempted to fix the electron energy and only changed the undulator gap to vary the radiation wavelength; however, our analysis implies that this is difficult because of the great difference of the power gain length and FEL efficiency at different wavelengths. Therefore, we have considered dividing the wavelength range into three subareas. In each subarea, a constant electron energy is used and the wavelength tuning is realized only by adjusting the undulator gap. The simulation results show that this scheme has an acceptable performance.  相似文献   

3.
The eigenmode characteristics for equilateral triangle resonator (ETR) semiconductor microlasers are analysed by the finite-difference time-domain technique and the Pade approximation.The random Gaussian correlation function and sinusoidal function are used to model the side roughness of the ETR.The numerical results show that the roughness can cause the split of the degenerative modes,but the confined modes can still have a high quality factor.For the ETR with a 3μm side length and the sinusoidal fluctuation,we can have a quality factor of 800 for the fundamental mode in the wavelength of 1500nm,as the amplitude of roughness is 75nm.  相似文献   

4.
The optical performance of a grating-coupled external Continuous tuning from 1391 nm to 1468 nm is realized at cavity laser based on InAs/InP quantum dots is investigated. an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.  相似文献   

5.
范薇  陈柏 《中国物理快报》2002,19(8):1108-1111
Distributed feedback (DFB) fibre lasers usually have two longitudinal modes symmetrically located at each side of the Bragg wavelength because they have the same lowest gain threshold.In order to obtain single longitudinal output,π-phase-shifted DFB fibre lasers are often adopted.However,we found that,even with no π-phase-shift,the single frequency output can be acquired from Yb^3 -doped fibre DFB lasers.The polarization beat frequency was measured to be 366MHz.  相似文献   

6.
A dual-wavelength laser system with wideband tunable wavelength spacing and more than 2 W output power is proposed and demonstrated. The operation principle of the laser system is based on the saturation gain characteristic of a cladding-pumped Era+ /yba+ co-doped fibre amplifier combining with a wideband tunable fibre laser with fiat power spectrum. The tuning range of the wavelength spacing is continuous within a 35 nm spectral range, and the power difference between both lasing wavelengths can be easily adjusted and controlled by a variable optical attenuator. The total output power can approximately keep unchangeable when the wavelength spacing and the power difference between both lasing wavelengths are continuously tuned and changed. The maximum total output power of the laser system is about 2.22 W.  相似文献   

7.
A simple actively mode-locked fibre ring laser is proposed and successfully demonstrated to generate switchable dual-wavelength picosecond pulses using a Bragg grating in a polarization-maintaining fibre. The wavelength spacing specified by the grating is only 0.52nm. The proposed laser can be made to operate in stable dualwavelength or switch between wavelengths at room temperature, only by simple adjustment of a polarization controller.  相似文献   

8.
A kind of double-cladding photonic crystal fiber (DC-PCF) with high birefringence and two zero-dispersion wavelengths is proposed. It is found that the birefringence of DC-PCF with inner cladding air holes pitch 1.0μm and diameter 0.8μm is 1.001×10-2 in the optical communication band at wavelength 1.55μm by the multipole method. It is demonstrated that two zero dispersion wavelengths can be achieved in the optical communication band between 0.8μm and 1.7μm, and the first zero-dispersion wavelength is in the working wave band of the Ti:sapphire oscillator, which contributes to the frequency conversion of the Ti:sapphire femtosecond laser. PCF with two zero-dispersion wavelengths can make strong power supercontinuum spectral in the near infrared band.  相似文献   

9.
This paper theoretically studies the double-pumped fibre-optical parametric amplifiers (FOPAs) in photonic crystal fibres. Two distinct working regimes of FOPAs are researched, which depend on the dispersion at the central wavelength of the two pumps. Extremely broad tuning range can be obtained when the central pump wavelength is in the normal dispersion regime and is insensitive to the wavelength separation between the two pumps, while the tuning range is narrow in the anomalous dispersion regime and can be significantly enhanced by increasing the wavelength separation. Impacts of higher-order dispersions and temporal walk-off on the gain spectra are also discussed.  相似文献   

10.
A laser diode-pumped high-efficiency widely tunable Tm:YAP laser with excellent comprehensive properties is reported.The output power is stable at a given pump power.Under the absorbed pump power of 12.95 W,the maximum output power at 2,010 nm is 5.16 W,corresponding to a slope efficiency of 45.5%.The generated beam profile is close to the Gaussian TEM00 near the maximum pump power.Furthermore,the laser working wavelength can be continuously tuned through optimization from 1,894 to 2,066 nm,which is the widest tunable range for Tm:YAP lasers to date.  相似文献   

11.
Mode competitions between modes with different output coupling efficiencies can result in optical bistability under certain asymmetric nonlinear gain. For a GaInAsP/InP equilateral triangle microlaser with the side length of 10μm, the drop of the output power with the increase of the injection current is observed corresponding to transverse mode transitions. Furthermore, the measured laser spectra up to 270K show that lasing modes coexist with the wavelength interval of 39nm at 240K. The emission at 5.2THz can be expected by the mode frequency beating with the 39nm interval.  相似文献   

12.
This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretically the zero dispersion wavelength can be tailored by respectively changing the rounded diameter of air holes, pitch, refractive index, normalized thickness of core rings, and hole diameter to pitch ratio. At the same time the tailoring of dispersion slope can also be realized by changing the rounded diameter of air holes or pitch or normalized thickness of core rings. To illustrate the reasonability of fibre designs, this paper also gives the variance of normalized interface field intensity which measures the scattering loss relatively versus wavelength for different designs. From the viewpoint of loss, varying the rounded diameter and the thickness of core ring could shift zero wavelength but it is difficult to get the required parameters within so tiny range in practical drawing of PBGFs, on the other hand, it is possible in practice to respectively alter the pitch and refractive index to shift zero wavelength. But varying hole diameter to pitch ratio is not worthwhile because they each induce large increase of loss and narrowness of transmission bandwidth. The zero dispersion wavelength can be engineered by respectively varying the rounded diameter of air holes, pitch, refractive index, and normalized thickness of core rings without incurring large loss penalties.  相似文献   

13.
We present a novel design of a compact, stable, and easy-adjustable semiconductor optical amplifier (SOA) system. This SOA system is capable of providing up to 560-roW laser power at the wavelength of 852 nm. For the continuous-wave (CW) seeding laser, the amplification gain can reach 18 dB. We add amplitude modulation onto the CW laser and measure the modulation amplification between seeding and output laser. The amplification gain remains constant within the frequency range from 10 Hz to 1 MHz. The whole system could work in ultra-stable condition: for CW seeding laser, the fluctuation of output power is less than 0.33% in several hours.  相似文献   

14.
By utilizing a Fabry-Perot (FP) nanocavity adjacent to T-shaped gap waveguide ports, spectrally selective filtering is realized. When the wavelength of incident light corresponds to the resonance wavelength of the FP nanocavity, the surface plasmons are captured inside the nanocavity, and light is highly reflected from this port. The resonance wavelength is determined by using Fabry-Perot resonance condition for the nanocavity. For any desired filtering frequency the dimension of the nanocavity can be tailored. The numerical results are based on the two-dimensional finite difference time domain simulation under a perfectly matched layer absorbing boundary condition. The analytical and simulation results indicate that the proposed structure can be utilized for filtering and splitting applications.  相似文献   

15.
An optimized dual fiber Bragg grating (FBG) is proposed for 980-nm semiconductor lasers without thermoelectric coolers to restrict temperature-induced wavelength shift.The mathematical model of the temperature-induced wavelength shift of the laser with the dual FBG is built using the external cavity feedback rate equations.The external cavity parameters are optimized for achieving the stability mode-locking laser output.The spectral characteristics of the dual FBG stabilized laser are measured to range from 0 to 70 °C.The side mode suppression ratio (SMSR) is more than 45 dB,while the full-width at half-maximum (FWHM) is less than 1 nm.The peak wavelength shift is less than 0.1 nm.The dual FBG wavelength shift proportional coefficient is between 0.1086 and 0.4342.  相似文献   

16.
A simple method based on CFD code and Matlab for aero-optic effects is presented. Density fluctuation from CFD code due to the changes of such factors as altitude, speed, equipment location, and wavelength is introduced as an input to Matlab. The overall calculations are in Matlab. The results show that the performance of electro-optical (EO) system can be improved when the altitude increasing, the speed is as slowly as possible, and the equipment location moves to the leading edge of the airborne platform as far as possible, for the wavelength there is an optimum one when the indexes of contrast and resolution of the system are both considered. All of these methods can minimize the optical aberrations. Several numerical simulations demonstrate the method.  相似文献   

17.
A simple method based on CFD code and Matlab for aero-optic effects is presented. Density fluctuation from CFD code due to the changes of such factors as altitude, speed, equipment location, and wavelength is introduced as an input to Matlab. The overall calculations are in Matlab. The results show that the performance of electro-optical (EO) system can be improved when the altitude increasing, the speed is as slowly as possible, and the equipment location moves to the leading edge of the airborne platform as far as possible, for the wavelength there is an optimum one when the indexes of contrast and resolution of the system are both considered. All of these methods can minimize the optical aberrations. Several numerical simulations demonstrate the method.  相似文献   

18.
The continuous wavelength chemical oxygen-iodine laser can be turned into pulse operation mode in order to obtain high energy and high pulse power. We propose an approach to produce iodine atoms instantaneously by pulsed gas discharge with the assistance of spark pre-ionization to achieve the pulsed goal. The influence of spark pre-ionization on discharge homogeneity is discussed. Voltage-current characteristics are shown and discussed in existence of the pre-ionization capacitor and peaking capacitor. The spark pre-ionization and peaking capacitor are very helpful in obtaining a stable and homogeneous discharge. The lasing is achieved at the total pressure of 2.2-2.9 kPa and single pulse energy is up to 180 mJ, the corresponding specific output energy is 1.0 3/L.  相似文献   

19.
A tunable infrared plasmonic polarization filter is proposed and investigated in this paper. The filter is based on the sandwich absorption structure which consists of three layers. The top layer is an array of asymmetrical cross resonator.The middle and bottom layers are dielectric spacer and metal film respectively. By absorbing specific wavelength of the incident light perfectly, the reflection spectrum of the structure shows filter performance. The calculated results show that the absorption wavelength is strongly dependent on the length of branch of the asymmetrical cross resonator which is parallel to the light polarization and independent of the length of the vertical one. Therefore, the asymmetrical cross resonator filter structure opens the way for freely tuning the filtering wavelength for a different light polarization. We can fix a resonant wavelength(absorption wavelength) corresponding to one polarization and change the resonant wavelength for the other polarization by adjusting the corresponding branch length of the asymmetrical cross resonator, or change the two resonant wavelengths of both two polarizations at the same time.  相似文献   

20.
Beam pattern of sparse array for passive sonar   总被引:1,自引:0,他引:1  
This work aims at sparse array without grating lobe for passive sonar, in order to increase frequency band of the passive sonar and reduce the cost. According to traditional method, the distance between two contiguous sensors in sonar array should be less than the wavelength of highest frequency of the signal; otherwise the grating lobe appears on beam pattern. The paper realizes that the conclusion of the grating lobe emergence it is not fit to the passive sonar due to the sine wave signal model in traditional method, in fact the input of passive sonar is random signal. Prom three aspect of the computer simulation, real passive sonar signal and theory analysis, it is revealed that the grating lobe does not appear on beam pattern when the distance between two contiguous sensors in passive sonar array is longer than wavelength of highest frequency. Whitening of the radiated noise can widen the frequency band, to ensure the beam pattern without the grating lobe. The conclusion of the paper is: if the band of radiated noise is wide enough (broader than 1 octave), that the wavelength of signal can be shorter than the distance between two contiguous sensors in passive sonar without grating lobe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号