首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermally stable macroporous CaSiO3, Fe3+- and Ni2+-doped (0.5 to 5 mol%) ceramics have been prepared by solution combustion process by mixing respective metal nitrates (oxidizers), fumed silica. Diformol hydrazine is used as a fuel. The combustion products were identified by their X-ray diffraction and thermal gravimetry/differential thermal analysis. Single phases of β-CaSiO3 and α-CaSiO3 were observed at 950 and 1200 °C, respectively. The phase transition temperatures of combustion-derived CaSiO3 were found to be lower compared to those obtained via solid-state reaction method. It is interesting to note that with an increase in the calcination temperature the samples become more porous with an increase in the pore diameter from 0.2 to 8 μm. The electron paramagnetic resonance (EPR) spectrum of Fe3+ ions in CaSiO3 exhibits a weak signal at g = 4.20 ± 0.1 followed by an intense signal at g = 2.0 ± 0.1. The signal at g = 4.20 is ascribed to isolated Fe3+ ions at rhombic site. The signal at g = 2.0 is due to Fe3+ coupled together with dipolar interaction. In Ni2+-doped CaSiO3 ceramics the EPR spectrum exhibits a symmetric absorption at g = 2.23 ± 0.1. This deviation from the free electron g-value is ascribed to octahedrally coordinated Ni2+ ions with moderately high spin–orbit coupling. The number of spins participating in resonance and the paramagnetic susceptibilities have been evaluated from EPR data as a function of Fe3+ as well as Ni2+ content. The effect of alkali ions (Li, Na and K) on the EPR spectra of these ceramics has also been studied. Authors' address: R. P. Sreekanth Chakradhar, Glass Technology Laboratory, Central Glass and Ceramic Research Institute, Kolkata 700032, India  相似文献   

2.
We have investigated the structure, optical and magnetic properties of ferroelectric KNb1-xFexO3-δ (X=0, 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25) synthesized by a traditional solid-state reaction method. According to the X-ray diffraction and the results of Rietveld refinement, all the samples maintain orthorhombic distorted perovskite structures with Amm2 space group without any secondary phase, suggesting the well incorporation of Fe ions into the KNbO3 matrix. With the increase of Fe concentration, the band gap of each sample is decreased gradually, which is much smaller than the 3.18 eV band gap of pure KNbO3. Through X-ray photoelectron spectrum analysis, the increased density of oxygen vacancy and Fe ions may be responsible for the observed decrease in band gap. Compared with the pure KNbO3, Fe doped samples exhibit room-temperature weak ferromagnetism. The ferromagnetism in KNb1-xFexO3-δ with low-concentration dopants (X=0.01-0.10) can be attributed to the bound magnetic polaron mediated exchange. The enhancement of magnetism for the high-concentration (X=0.10-0.20) doped samples may arise from the further increase of magnetic Fe ions.  相似文献   

3.
The effect of divalent cation substitution on the structure and magnetic properties of La1.2Sr1.8-xCaxMn2O7 (x = 0-0.900) is investigated in this paper. Partly replacing divalent cation Sr2+ by Ca2+ ions results in the weakening and then disappearance of long-range ferromagnetic ordering, and the formation of spin canting and low-temperature spin-glass. Based on structural analysis by Rietveld profile fitting, we suggest that this variation of magnetic property be related to a Jahn-Teller-type attice distortion of MnO6 octahedra due to the introduction of the smaller sized Ca2+ ions.  相似文献   

4.
The photoinduced optical absorption α of doped yttrium iron garnets (YIG) is investigated. It is found that the optical absorption α at a wavelength of 1.1 μm depends on the wavelength of irradiating light in the range 0.6–1.9 μm. It is demonstrated that, in the Y3Fe5O12 crystal with an acceptor Ba impurity, the photoinduced increase in α is due to the formation of Fe4+ ions in octahedral sites. The charge transfer occurs through photoexcitation of the 6 A 1g (6 S) → 4 T 1g (4 G) and 6 A 1g (6 S) → 4 T 2g (4 G) transitions of octahedral Fe3+ ions. In the crystal with a donor Si impurity, the increase in α is caused by the formation of Fe2+ ions upon photoionization of silicon. __________ Translated from Fizika Tverdogo Tela, Vol. 43, No. 7, 2001, pp. 1233–1235. Original Russian Text Copyright ? 2001 by Doroshenko, Nadezhdin.  相似文献   

5.
耿遥祥  特古斯  毕力格 《中国物理 B》2012,21(3):37504-037504
The structural and magnetocaloric properties of Mn1.35Fe0.65P1-xSix compounds are investigated. The Si-substituted compounds, Mn1.35Fe0.65P1-xSix with x = 0.52, 0.54, 0.55, 0.56, and 0.57, are prepared by high-energy ball milling and the solid-state reaction. The X-ray diffraction shows that the compounds crystallize into the Fe2P-type hexagonal structure with space group P62m. The magnetic measurements show that the Curie temperature of the compound increases from 253 K for x = 0.52 to 296 K for x = 0.56. The isothermal magnetic-entropy change of the Mn1.35Fe0.65P1-xSix compound decreases with the Si content increasing. The maximal value of the magnetic-entropy change is about 7.0 J/kg稫 in the Mn1.35Fe0.65P0.48Si0.52 compound with a field change of 1.5 T. The compound quenched in water possesses a larger magnetic entropy change and a smaller thermal hysteresis than the non-quenched samples. The thermal hysteresis of the compound is less than 3.5 K. The maximum adiabatic temperature change is about 1.4 K in the Mn1.35Fe0.65P0.45Si0.55 compound with a field change of 1.48 T.  相似文献   

6.
王伟  武鑫华  毛翔宇  陈小兵 《中国物理 B》2011,20(7):77701-077701
Co-doped Bi5FeTi3O15 thin films (BFCT-x, Bi5Fe1-xCoxTi3O15) were prepared using a sol—gel technique. XRD patterns confirm their single phase Aurivillius structure, and the corresponding powder Rietveld analysis indicates the change of space group around x=0.12. The magnetic hysteresis loops are obtained and ferromagnetism is therefore confirmed in BFCT-x thin films. The remanent magnetization (Mr) first increases and reaches the maximum value of 0.42 emu/cm3 at x=0.12 due to the possible Fe3+—O—Co3+ ferromagnetic coupling. When x = 0.25, the Mr increases again because of the dominant Fe3+—O—Co3+ ferromagnetic coupling. The remanent polarization (2Pr) of BFCT-0.25 was measured to be as high as 62 μC/cm2, a 75% increase when compared with the non-doped BFCT-0 films. The 2Pr remains almost unchanged after being subjected to 5.2 × 109 read/write cycles. Greatly enhanced ferroelectric properties are considered to be associated with decreased leakage current density.  相似文献   

7.
王丽国  申超  郑厚植  朱汇  赵建华 《中国物理 B》2011,20(10):100301-100301
This paper describes an n-i-p-i-n model heterostructure with a manganese (Mn)-doped p-type base region to check the stability of a positively charged manganese AMn+ centre with two holes weakly bound by a negatively charged 3d5(Mn) core of a local spin S=5/2 in the framework of the effective mass approximation near the Γ critical point (k~0). By including the carrier screening effect, the ground state energy and the binding energy of the second hole in the positively charged centre AMn+ are calculated within a hole concentration range from 1 × 1016 cm-3 to 1 × 1017 cm-3, which is achievable by biasing the structure under photo-excitation. For comparison, the ground-state energy of a single hole in the neutral AMn0 centre is calculated in the same concentration range. It turns out that the binding energy of the second hole in the AMn+ centre varies from 9.27 meV to 4.57 meV. We propose that the presence of the AMn+ centre can be examined by measuring the photoluminescence from recombination of electrons in the conduction band with the bound holes in the AMn+ centre since a high frequency dielectric constant of varepsilon =10.66 can be safely adopted in this case. The novel feature of the ability to tune the impurity level of the AMn+ centre makes it attractive for optically and electrically manipulating local magnetic spins in semiconductors.  相似文献   

8.
The transformation of the spin structure of a high-spin Fe8 cluster in a strong magnetic field has been investigated. The magnetization and magnetic susceptibility of the material are calculated at different external magnetic fields and temperatures. It is shown that the magnetic field induces transformation of the spin structure of a Fe8 cluster from the quasi-ferrimagnetic structure with an average magnetic moment of 20 μB per molecule to the quasi-ferromagnetic structure with a magnetic moment of 40 μB. Unlike a similar transformation of a Néel ferrimagnet, which is continuous and occurs through an intermediate angular phase, this process in Fe8 at low temperatures manifests itself as a cascade of discrete quantum jumps, each being the transition accompanied by an increase in the spin number of the complex. At high temperatures, the behavior of the magnetic cluster approaches the cluster behavior described by the classical theory. The nature of quantum jumps is discussed in terms of the magnetic-field-induced energy level crossing in the ground state of a magnetic cluster. __________ Translated from Fizika Tverdogo Tela, Vol. 42, No. 6, 2000, pp. 1068–1072. Original Russian Text Copyright ? 2000 by Zvezdin, Plis, Popov.  相似文献   

9.
We investigate the angular distribution of the transmitted 18keV negative ions Cl- through Al2O3 nanocapillaries of 50 nm in diameter and 10 μm in length. Elastic scattering ions and inelastic scattering ions are obtained simultaneously. The experimental result is partially consistent with the guiding effect. We can qualitatively explain our experimental result through a dynamic process.  相似文献   

10.
Microwave absorption in the tetragonal singlet paramagnets HoVO4 (zircon structure) and HoBa2Cu3O x (x ≈ 6, layered perovskite structure) is studied and compared in pulsed magnetic fields up to 40 T at low temperatures. These paramagnets are characterized by a singlet-doublet scheme of the low-lying levels of the Ho3+ ion in a crystal field. In a magnetic field directed along the tetragonal axis, HoVO4 exhibits resonance absorption lines at wavelengths of 871, 406, and 305 μm, which correspond to electron transitions between the low-lying levels of the Ho3+ ion in the crystal field. The positions and intensities of these absorption lines in HoVO4 are well described in terms of the crystal-field formalism with the well-known interaction parameters. The absorption spectra of HoBa2Cu3O x at a wavelength of 871 μm exhibit broad resonance absorption lines against the background of strong nonresonance absorption. The effects of low-symmetry (orthorhombic, monoclinic) crystal-field components, the deviation of a magnetic field from a symmetry axis, and various pair interactions on the absorption spectra of the HoVO4 and HoBa2Cu3O x crystals are discussed. Original Russian Text ? Z.A. Kazeĭ, V.V. Snegirev, M. Goaran, L.P. Kozeeva, M.Yu. Kameneva, 2008, published in Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 3, pp. 632–645.  相似文献   

11.
LiMn2O4 films have been deposited onto silicon wafer by pulsed-laser deposition (PLD) technique in order to test their reliability as cathode materials in rechargeable lithium microbatteries. The film formation has been studied as a function of the preparation conditions, i.e., composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Depending on the conditions of deposition, Mn2O3 was present as an impurity phase. When deposited onto silicon substrate maintained at 300 °C in an oxygen pressure of 100 mTorr from the target LiMn2O4+15 % Li2O, the PLD films are well-textured with crystallite size of 300 nm. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by x-ray diffraction and Raman scattering measurements. Surface morphologies of layers were investigated by SEM. The cells Li//LiMn2O4 have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the range 3.0–4.2 V. The voltage profiles show the two expected steps for LixMn2O4 with a specific capacity as high as 120 mC/cm2 μm. The chemical diffusion coefficients for the LixMn2O4 thin films appear to be in the range of 10−11-10−12 cm2/s. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

12.
In this work, we made five samples of SrAl2O4: Eu2+, Dy3+, the α phase and β phase SrAl2O4:Eu2+,Dy3+ powder and pellet samples, and α phase single crystal. We have measured the emission spectra of all the samples. All the emission peaks are around 520 nm, which correspond to the transition from 4f65d1(2Eg) to 4f7(8S7/2) of Eu2+ in SrAl2O4 host. The intensity of emission of the β phase is stronger than that of the α phase. We believe that it is because the Eu2+ ions have occupied the two types of sites in the α phase SrAl2O4 host and the lifetime of the transition of Eu2+ in the A site is longer than that in the B site. This result also proves that the β phase of the material is brighter than the α phase. In addition, the β phase can be achieved by quenching technique.  相似文献   

13.
The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts.  相似文献   

14.
Using the technique of high-temperature melting, a new Er3+/Yb3+ co-doped fluorophosphate glass was prepared. The absorption and fluorescence spectra were investigated in depth. The effect of Er3+ and Yb3+ concentration on the spectroscopic properties of the glass sample was also discussed. According to the Judd-Ofelt theory, the oscillator strength was computed. The lifetime of 4I13/2 level (τm) of Er3+ ions was 8.23 ms, and the full width at half maximum of the dominating emission peak was 68 nm at 1.53 τm. The large stimulated emission cross section of the Er3+ was calculated by the McCumber theory. The spectroscopic properties of Er3+ ion were compared with those in different glasses. The full width at half maximum and σe are larger than those of other glass hosts, indicating this studied glass may be a potentially useful candidate for high-gain erbium-doped fiber amplifier.  相似文献   

15.
CuB2O4 single crystals have been grown and their magnetic and resonance properties have been investigated for the first time. The temperature dependence of the susceptibility was found to contain features at T=21 and 10 K. The CuB2O4 single crystal transformed at T=21 K to a weakly ferromagnetic state. The sharp drop in susceptibility at T<10 K is caused by a transition of the magnetic system of CuB2O4 to an antiferromagnetic state. The effective magnetic moment of the Cu2+ ion, determined from the high-temperature part of the magnetic susceptibility, is 1.77 μ B. The room-temperature g factors are, respectively, 2.170 and 2.133 for magnetic field parallel and perpendicular to the c axis of the crystal. The antiferromagnetic resonance parameters in the weakly ferromagnetic and antiferromagnetic phases were measured. Fiz. Tverd. Tela (St. Petersburg) 41, 1267–1271 (July 1999)  相似文献   

16.
Doping of GaN crystals prepared by various methods (HVPE and MOCVD) with various degrees of perfection of the mosaic structure, using rare-earth (RE) ions has been studied. An analysis of the shape of the photoluminescence spectra obtained before and after the doping showed that, as the defect concentration decreases, the intracenter f-f transitions characteristic of RE ions, at 1.54 and 0.54 μm in Er3+ and 0.72 μm in Sm2+, become observable. The intracenter f-f transitions of RE ions are seen, as a rule, in epitaxial layers with well-aggregated and relaxed domains and are absent in the case of a mosaic structure containing domains in the near-surface part of the epitaxial layer that are not fully coalesced. RE doping of the crystals under study was observed to initiate defect gettering. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 5, 2004, pp. 814–819. Original Russian Text Copyright ? 2004 by Krivolapchuk, Lundin, Mezdrogina, Nasonov, Rodin, Shmidt.  相似文献   

17.
Ion transport and battery discharge characteristic studies are reported for a new Ag+ ion conducting two-phase composite electrolyte system (1−x)[0.75AgI: 0.25AgCl]: xFe2O3, where 0 ≤ x ≤ 0.5 in molar weight fraction. An alternative single-phase host-matrix ‘annealed [0.75AgI: 0.25AgCl] mixed system/ solid solution’ has been used in place of the traditional host, AgI. Submicron size particles (<1 μm) of Fe2O3 has been used as second phase dispersoid. The composition 0.8[0.75AgI: 0.25AgCl]: 0.2Fe2O3, exhibiting the highest room temperature conductivity has been referred to as the optimum conducting composition (OCC). The reason for an enhancement of an order of magnitude in the conductivity from that of the pure host has been identified through direct determination of ionic mobility (μ) and mobile ion concentration (n) using transient ionic current (TIC) technique. The XRD study confirmed the coexistence of the constituent phases. The ionic transference number is found to be very close to unity. This reveals the fact that the silver ions are the sole charge carriers in the system. The results are discussed in the light of space-charge models proposed for the two-phase composite electrolyte systems. Solid state batteries, fabricated using OCC as electrolyte, Ag-metal as anode and mixtures of iodine & graphite, viz. (C+I2), (C+KI3), (C+(CH3)4NI3), (C+(C2H5)4NI3), etc. as cathodes, were discharged under different load conditions. The battery with (C+I2) cathode performed satisfactorily specially under low current drain states. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

18.
李成仁  李淑凤  董斌  程宇琪  殷海涛  杨静  陈宇 《中国物理 B》2011,20(1):17803-017803
This paper reports that a series of Nd3+:Er3+:Yb3+ co-doped borosilicate glasses have been prepared and their absorption spectra measured. The J--O intensity parameters Ωk (k=2, 4, 6), spontaneous radiative lifetime τrad, spontaneous transition probability A, fluorescence branching ratio β and oscillator strength fed of the Nd3+ ions at room temperature are calculated based on Judd--Ofelt (J--O) theory. The temperature dependence of the up-conversion photoluminescence characteristics in a Nd3+:Er3+:Yb3+ co-doped sample is studied under a 978 nm semiconductor laser excitation, and the energy transfer mechanisms among Yb3+, Er3+ and Nd3+ ions are analysed. The results show that the J--O intensity parameters Ω2 increase when the Nd3+ concentration of the Nd3+:Er3+:Yb3+ co-doped borosilicate glasses increases. The possibility of spontaneous transition is small and lifetimes are long at levels of 4F5/2 and 4F3/2. The intensity of Nd3+ emissions at 595, 691, 753, 813 and 887 nm are markedly enhanced when the sample temperature exceeds 400 K. The reasons being the cooperation of the secondary sensitization from Er3+ to Nd3+ and the contribution of a multi-phonon.  相似文献   

19.
We report on alloys formed by replacing iron with manganese in the compound Dy2Fe17C1.0 Samples were characterized by X-ray diffraction and magnetic measure-ments, The 2:17-type structure can be crystallized in the whole range of manganese substitution. The Curie temperature of the series of Dy2Fe17-xMnxC1.0(x= 0-17) drops down considerably from 515K for x = 0 to about 20K for compounds with high manganese concentration, and the compensation point was observed in a narrow range of x≈4-6. The rapid decrease of the magnetization shows that the manganese substitution is not a simple magnetic dilution to the transition-metal sublattice mo-ment, it indicates that the moment of Mn may be antiparallel to that of Fe. The field dependence of the magnetization of Dy2Fe17-xMnxC1.0 may indicate the existence of the nonlinear magnetic structure for the samples with high Mn conoentrations.  相似文献   

20.
Erbium ions have been incorporated for the first time in bulk 6H-SiC crystals during growth, and they were unambiguously identified from the 167Er EPR hyperfine structure. High-temperature luminescence of erbium ions at a wavelength of 1.54 μm has been detected. The observed luminescence exhibits an increase in intensity with increasing temperature. The observation of Er luminescence in 6H-SiC offers a promising potential for development of semiconductor light-emitting devices at a wavelength within the fiber-optics transparency window. Fiz. Tverd. Tela (St. Petersburg) 41, 38–40 (January 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号