首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了中能X光机装置触发系统研制和相关实验结果,触发系统包括主机6个支路激光开关的触发和主机放电的触发。其中6个支路的触发由6台YAG四倍频激光器完成,主机放电电触发系统由1台YAG四倍频激光器来触发。实验结果表明:每台激光器出光时间抖动σ小于等于0.3 ns,激光开关导通延迟时间约25 ns,抖动σ小于等于1.2 ns,电触发系统中激光与触发器输出电压之间的时间抖动σ为0.5 ns,匹配负载上电压大于120 kV,前沿约28 ns,脉宽150 ns。中能X光机在杆箍缩二极管负载上获得最大输出为4.2 MV/100 kA的电脉冲,电压脉冲半高宽约55 ns,输出的X射线时间抖动σ为3.4 ns。实验结果表明触发系统具备对6个支路精确调节和控制的能力,确保了中能X光机装置的高可靠性。  相似文献   

2.
介绍了Z箍缩初级实验平台激光触发系统的设计和单路样机验证实验结果.采用12台激光器、24个激光触发主开关来实现24路电流脉冲的精确同步,由Nd:YAG四倍频脉冲激光来触发开关,采用水平分光将一台激光器的激光脉冲等分为两束激光,激光聚焦后分别触发相邻的两路主开关.单路样机验证实验获得的激光脉冲的抖动极差小于等于3 ns.主开关的抖动极差小于等于5 ns,3台激光器之间的抖动极差小于等于3 ns.实验结果表明:在主Marx充电电压小于等于75 kV时,光路管道双隔离气室具有良好的绝缘性和密封性;激光光路系统稳定可靠;能量为100 mJ、脉冲宽度为7 ns的266 nm激光经过分光后,能够满足Z箍缩初级实验平台的设计要求.  相似文献   

3.
结合GW级纳秒脉冲源建立了实验平台,研究了激光触发开关的延迟时间及其抖动与激光能量、工作电压、激光波长、透镜焦距等参数的关系。结果表明:开关延迟与抖动随激光脉冲能量的上升、工作电压的上升而逐渐减小;采用紫外光得到的开关延迟与抖动小于相同条件下红外光得到的结果;在高气压小间隙开关条件下,采用小的透镜焦距可以得到更小的开关延迟与抖动。开关在自击穿电压220 kV、欠压比为80%、采用7 mJ,266 nm 波长激光时的抖动为0.3 ns,在此条件下进行了两台脉冲源的同步实验,得到其同步偏差85%置信率小于0.3 ns。  相似文献   

4.
 建立了精确的激光触发沿面闪络试验系统,用波长1 064/532 nm,调Q开关的Nd:YAG固体激光器来触发绝缘试品的沿面闪络。分别测量了Marx发生器的触发器输入电压和输出电压、Marx发生器的触发脉冲和Marx发生器输出电压、激光器的Q开关控制信号和输出激光脉冲之间的时延和抖动。应用自制的数字脉冲发生器控制Marx发生器的触发器及激光器的氙灯信号触发,用Marx发生器输出电压控制激光器的Q开关;根据所测时延和激光器的控制时序,调整数字脉冲发生器各通道的时延。实验结果显示:Marx输出电压与激光脉冲时延516.1 ns,抖动4.5 ns,达到激光脉冲与脉冲电压的精确同步。  相似文献   

5.
 建立了精确的激光触发变压器型脉冲调制器的同步触发系统。分别对脉冲调制器初级电脉冲触发控制信号与电脉冲输出时刻之间、变压器充电起始时刻与激光器Q开关触发信号之间、激光信号与脉冲调制器放电时刻之间的延时进行了测量,并分析其相互间时序关系;通过对变压器输出电压信号进行采样滤波后,利用比较器输出逻辑门电路(TTL)信号作为激光器Q开关触发信号,实现了脉冲形成线充电时间与激光触发主开关放电过程的同步控制。开展了激光触发脉冲功率调制器主开关的实验研究,在形成线充电电压-590 kV时,在假负载上得到-305 kV,20 kA的电脉冲,脉冲宽度126 ns,激光到达主开关时刻与开关导通时刻间延时35 ns。  相似文献   

6.
建立了精确的激光触发变压器型脉冲调制器的同步触发系统。分别对脉冲调制器初级电脉冲触发控制信号与电脉冲输出时刻之间、变压器充电起始时刻与激光器Q开关触发信号之间、激光信号与脉冲调制器放电时刻之间的延时进行了测量,并分析其相互间时序关系;通过对变压器输出电压信号进行采样滤波后,利用比较器输出逻辑门电路(TTL)信号作为激光器Q开关触发信号,实现了脉冲形成线充电时间与激光触发主开关放电过程的同步控制。开展了激光触发脉冲功率调制器主开关的实验研究,在形成线充电电压-590 kV时,在假负载上得到-305 kV,20 kA的电脉冲,脉冲宽度126 ns,激光到达主开关时刻与开关导通时刻间延时35 ns。  相似文献   

7.
XeCl激光触发气体开关的实验研究   总被引:2,自引:1,他引:1  
通过实验研究了在自流工作状态下,XeCl准分子激光(λ=308nm,FWHM=21ns)对N_2和SF_6两种气体开关的触发特性。实验结果表明:(1)在p=0.1MPa,开关工作电压90%V_(SB)(V_(SB)为开关的自击穿电压)时,XeCl激光对N_2和SF_6两种气体开关的触发阈值约为10~8W/cm~2。(2)开关的触发延时和抖动随着激光能量和开关欠压比的增大而减小,当激光能量为33.8mJ,开关工作电压90%V_(SB)(V(SB)=36.5kV)时,充N_2开关的延时和抖动分别为85.5ns和400ps。相同欠压比下,SF_6气体开关(V_(SB)=52kV)的最小抖动度为2ns。(3)SF_6气体开关的触发延时与用T.H.Martin公式计算的结果一致。  相似文献   

8.
何安  丁瑜  康军军  任济  王贵林  张朝辉  夏明鹤  计策 《强激光与粒子束》2018,30(3):035003-1-035003-5
介绍了Z箍缩初级实验平台“聚龙一号”装置24路模块的精确控制技术和实验结果, 通过采用24个激光触发开关来控制24路模块的精确导通, 实现了对“聚龙一号”装置输出电流波形的精确控制和调节。24个激光触发开关由12台Nd: YAG四倍频脉冲激光器来触发, 每台激光器分光后触发2路激光开关。实验结果表明: 24路激光之间的抖动小于1.0 ns, 激光开关的抖动小于1.5 ns,“聚龙一号”装置在主Marx充电电压为65 kV时, 当24路模块同步导通时,获得负载电流9.8 MA, 电流前沿上升时间(10%~90%)为75 ns;在24路模块分时放电时,实现了对电流波形的精确调节,电流前沿上升时间(10%~90%)可以拓展到600 ns, 对应的负载电流峰值为5.5 MA,电流波形的模拟值与实验测量结果基本一致,在相同负载和实验条件下,获得的电流波形具有很好的重复性。  相似文献   

9.
介绍了2 MV激光触发多级气体开关在强光一号加速器上的实验研究工作。给出了实验方案,激光触发信号采用轴向引入的方法,激光光路穿过二极管,沿水线轴向引入开关;分析了开关自击穿实验和触发实验的实验结果,总结了实验中出现的问题并对其原因进行了分析,提出了改进措施。 结果表明,开关最大工作电压2 MV,最大电流大于600 kA,当欠压比88.3%时,激光触发开关的平均延时34.2 ns,抖动小于3.86 ns。  相似文献   

10.
研制成功了触发延迟时间抖动小于1ns的200kV原理型激光触发多级多通道开关,该开关由Bruce剖面型不锈钢电极构成的激光触发间隙和5-9级冰壶型不锈钢电极构成的等间距环形过压自击穿隙组成。采用了四倍频Nd:YAG激光器为触发源,研究了开关触发延迟时间及其抖动与激光脉冲能量、工作电压、气体种类及气体压强等实验参数之间的依赖关系。  相似文献   

11.
在聚龙一号装置(PTS装置)上开展了系列波形调节实验,成功在负载上输出脉冲上升时间达到600ns、峰值电流大于5.0 MA的电流。聚龙一号装置在同步放电情况(短脉冲模式)下,负载电流的上升时间约90ns,峰值电流约10.0 MA。波形调节通过装置24台激光触发气体开关分时放电、脉冲输出开关短接等技术调整,实现负载上长上升时间的脉冲电流输出。波形调节根据需要实现的电流波形形状,通过全电路模拟计算,调整激光触发气体开关的触发时序和脉冲输出开关状态,在相应负载上输出接近需求的实验波形。聚龙一号装置波形调节实验研究表明,输出电流脉冲的前沿的最大值取决于24台激光触发气体开关最早触发时刻和最晚触发时刻的时间差,该时间差受制于激光触发气体开关的正常触发。激光触发气体开关能否被正常触发,除了取决于进入开关触发间隙的触发激光能量外,还取决于开关充气压力和加载于开关两端的电位差,该电位差与相关两路的渡越时间相关。通过波形调节研究,聚龙一号装置具备在不同实验负载上输出不同上升时间、不同波形形状的脉冲电流的能力。  相似文献   

12.
开展了百kVμs前沿脉冲作用下激光触发水开关的研究。水开关采用球板电极结构,球头轴向开激光通孔,高压极为平板电极。开关自击穿电压133kV,抖动263ns。实验研究了激光击穿弧长占据间隙不同比例、不同触发能量和不同触发时刻等因素对触发抖动的影响。结果表明激光触发可将抖动有效减小到30ns以内。触发能量高于19mJ时触发抖动与能量大小关系不大。  相似文献   

13.
 DPF-300脉冲X射线源的同步触发系统采用三级触发:第一级由初级脉冲产生器触发氢闸流管;第二级由氢闸流管输出脉冲触发多路触发开关;第三级由多路触发开关和触发箱组成,触发主放电场畸变开关。该触发系统中多路触发开关产生负极性脉冲信号,通过耦合电容,到达开关的触发脉冲上升沿,约为40 ns,脉冲半高宽约60 ns,上升陡度大于0.67 kV/ns。能够同时触发40个同轴型场畸变开关,电压工作范围20~40 kV,不同发次触发箱输出的触发脉冲信号时间分散性小于4 ns,同一发次不同开关的放电时间分散性小于20 ns。在工作电压20 kV,主放电开关充0.115 MPa氮气时,整机负载电流达到约1 MA。  相似文献   

14.
激光触发多级多通道开关触发延迟及其抖动特性   总被引:1,自引:13,他引:1       下载免费PDF全文
 研究了激光触发多级多通道开关的触发延迟时间及其抖动与激光脉冲能量等实验参量的依赖关系,建立了零维数值模拟模型对实验现象进行了理论解释。实验结果表明:触发延迟时间及其抖动随激光脉冲能量、工作电压、气压上升呈下降趋势;随SF6-N2混合气中SF6体积百分含量上升呈上升趋势。欠压比大于等于90%时200kV原理型激光触发多级多通道开关触发延迟时间抖动小于1ns。  相似文献   

15.
激光触发多级多通道开关研究   总被引:1,自引:7,他引:1       下载免费PDF全文
 研究了200kV激光触发多级多通道开关的运行机理,该开关在直流电压下以四倍频Nd:YAG激光器为触发源进行的实验结果表明:开关触发延迟时间及其抖动随开关电压、激光能量和充气压力上升呈指数下降趋势,对混合气体则随气体密度上升而上升。随透镜焦距的增大延迟时间及其抖动呈上升趋势。该开关实现了多通道放电。  相似文献   

16.
 报道了4 MV激光触发多级多通道开关的结构设计和初步的实验结果及分析。该开关采用轴向聚焦触发方式,设计为匀场结构,采用场调整环与匀压环调整开关间隙电场分布,电极-绝缘子序列采用堆栈结构替代榫接结构,独立定位、紧固。实验结果表明:4 MV激光触发多级多通道开关的自击穿电压偏差小于5%,自击穿电压与工作气压呈良好的线性关系;触发延迟时间约25 ns,极差小于±2.5 ns,抖动1.5 ns;等工作电压-气压比条件下,随着气压和工作电压的上升触发延迟时间及其抖动趋向下降。  相似文献   

17.
4 MV激光触发多级多通道开关特性   总被引:1,自引:2,他引:1       下载免费PDF全文
报道了4 MV激光触发多级多通道开关的结构设计和初步的实验结果及分析。该开关采用轴向聚焦触发方式,设计为匀场结构,采用场调整环与匀压环调整开关间隙电场分布,电极-绝缘子序列采用堆栈结构替代榫接结构,独立定位、紧固。实验结果表明:4 MV激光触发多级多通道开关的自击穿电压偏差小于5%,自击穿电压与工作气压呈良好的线性关系;触发延迟时间约25 ns,极差小于±2.5 ns,抖动1.5 ns;等工作电压-气压比条件下,随着气压和工作电压的上升触发延迟时间及其抖动趋向下降。  相似文献   

18.
纳秒级Trigatron开关触发特性   总被引:4,自引:4,他引:0       下载免费PDF全文
设计了一种Trigatron开关,以Tesla型GW级纳秒脉冲源为实验平台,实验研究了不同电压极性组合、触发电压、触发间隙、触发极直径和触发脉冲宽度对开关触发特性的影响。实验研究结果表明:开关电压极性组合、触发电压、触发间隙对开关触发特性影响较大,在各欠压比条件下差异均十分明显,触发极直径和触发脉冲宽度对开关的触发特性影响较小。根据实验结果优化了开关结构和工作参数,获得的开关抖动最低可达0.1 ns。  相似文献   

19.
周亮  张明  孙承革 《强激光与粒子束》2020,32(3):035001-1-035001-6
通过等离子体建模仿真及物理实验结合的方式验证了激光触发伪火花开关的可行性。分别使用波长266 nm和532 nm的激光,对激光触发伪火花开关的最低激光触发能量、阳极着火延迟时间和时间跳动三项参数进行测试。在非聚焦模式下,仅调整激光能量,测得开关在波长266 nm激光触发下,最低触发能量为15 mJ,该触发能量下,阳极着火延迟时间约为340 ns,时间跳动约为40 ns;在波长532 nm激光触发下,最低触发能量为83 mJ,该触发能量下,阳极着火延迟时间约为420 ns,时间跳动约为60 ns。在维持实验平台不变的情况下,仅对入射激光进行聚焦,测得波长266 nm激光触发下,最低触发能量为4 mJ,当触发能量8 mJ时,阳极着火延迟时间190 ns,开关时间跳动小于1 ns;波长532 nm激光触发下,最低触发能量为6 mJ,当激光触发能量为8 mJ时,阳极着火延迟时间240 ns,开关时间跳动小于1 ns。  相似文献   

20.
高功率开关是脉冲功率装置中的重要部件。介绍了2 MV激光触发多级气体开关的设计思路,给出了开关在强光一号装置上的的静态实验和触发实验结果。实验结果表明:开关的性能基本达到设计的要求;开关在低阻抗传输线中进行实验,面临传输电荷量大的问题,传输电荷越大,将导致更多的放电产物,从而使绝缘能力下降,直接影响开关的使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号