首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 421 毫秒
1.
基于密度泛函理论的第一性原理平面波超软赝势方法,计算了本征ZnO,Cu、Fe单掺杂和Cu-Fe共掺杂ZnO的电子结构和光学性质.计算结果显示:Cu掺杂属于p型掺杂,Fe掺杂属于n型掺杂,单掺杂时Cu-3d态电子和Fe-3d态电子均在禁带形成杂质能级,从而提高ZnO的载流子浓度,改善ZnO的导电性能,而Cu-Fe共掺杂时ZnO半导体进入简并态,呈现金属特性.掺杂后的ZnO介电函数虚部变化主要集中在低能量区域,光谱吸收系数及反射率曲线发生红移,其中本征ZnO对太阳光谱有较好的透射性,Fe单掺杂和Cu-Fe共掺杂ZnO对可见光谱有相似的吸收效果,而Fe单掺杂ZnO对近紫外区域的光谱透射率更小,适用于制备防紫外线薄膜.  相似文献   

2.
基于密度泛函理论的第一性原理平面波超软赝势方法,计算了本征ZnO,Cu、Fe单掺杂和Cu-Fe共掺杂ZnO的电子结构和光学性质.计算结果显示:Cu掺杂属于p型掺杂,Fe掺杂属于n型掺杂,单掺杂时Cu-3d态电子和Fe-3d态电子均在禁带形成杂质能级,从而提高ZnO的载流子浓度,改善ZnO的导电性能,而Cu-Fe共掺杂时ZnO半导体进入简并态,呈现金属特性.掺杂后的ZnO介电函数虚部变化主要集中在低能量区域,光谱吸收系数及反射率曲线发生红移,其中本征ZnO对太阳光谱有较好的透射性,Fe单掺杂和Cu-Fe共掺杂ZnO对可见光谱有相似的吸收效果,而Fe单掺杂ZnO对近紫外区域的光谱透射率更小,适用于制备防紫外线薄膜.  相似文献   

3.
何静芳  郑树凯  周鹏力  史茹倩  闫小兵 《物理学报》2014,63(4):46301-046301
采用密度泛函理论框架下的第一性原理平面波超软赝势方法,计算了本征ZnO,Cu 1021cm-3单掺杂ZnO,Co单掺杂ZnO,Cu-Co共掺杂ZnO的电子结构和光学性质.结果表明,在本文掺杂浓度数量级下,Cu,Co单掺杂可以提高ZnO的载流子浓度,从而改善ZnO的导电性,Cu-Co共掺杂时ZnO半导体进入简并状态,呈现金属性.这三种掺杂ZnO均会在可见光和近紫外区域出现光吸收增强现象,其中由于Cu离子与Co离子之间的协同效应,Cu-Co共掺杂ZnO对太阳光的吸收大幅增加,因此Cu-Co共掺杂ZnO可以用于制备高效率的太阳电池.  相似文献   

4.
近年来,C、Cu单掺杂ZnO获得p型化的相关研究甚多,然而对于C-Cu共掺杂ZnO却鲜有研究.本文采用基于密度泛函理论的第一性原理方法,计算分析比较了C、Cu单掺杂、C-Cu分别以1:1、1:2、2:1比例共掺杂ZnO体系的晶格结构、电子态密度、空穴有效质量和形成能.研究结果表明:在本文的计算方法和模型下,各掺杂体系均能获得p型ZnO;当C-Cu以1:2比例掺入ZnO时,容易获得p型化水平更高、电子迁移效应更优、导电性更好、形成能低掺杂更稳定的半导体新材料.  相似文献   

5.
采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法,结合广义梯度近似(GGA)研究了过渡族金属(Mn,Fe,Co,Cu)与N共掺杂ZnO的能带结构、电子态密度分布、差分电荷密度和光学性质.计算表明Mn,Fe,Co与N共掺ZnO的光学性质与Mn,Fe,Co单掺杂相近,但是过渡族金属与N共掺杂有利于获得p型ZnO. 关键词: ZnO 第一性原理 电子结构 光学性质  相似文献   

6.
Fe和Ni共掺杂ZnO的电子结构和光学性质   总被引:3,自引:0,他引:3       下载免费PDF全文
基于密度泛函理论的第一性原理研究Fe,Ni单掺杂和(Fe,Ni)共掺杂纤锌矿型ZnO的能带结构、电子态密度分布、介电函数、光学吸收系数,分析了掺杂后电子结构与光学性质的变化.计算结果表明:掺杂体系的费米能级附近电子态密度主要来源于Fe 3d,Ni 3d态电子的贡献;与纯净ZnO相比,Fe,Ni单掺杂和(Fe,Ni)共掺杂ZnO的介电函数虚部均在0.46eV左右出现了一个新峰;Fe,Ni单掺杂和共掺杂ZnO的吸收光谱均发生明显的红移,并都在1.3eV处出现较强吸收峰.结合他人的计算和实验结果,给出了定性的讨 关键词: 氧化锌 掺杂 第一性原理 光学性质  相似文献   

7.
采用了基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法,计算本征ZnO和不同W掺杂浓度下W:ZnO体系的电子结构和光学性质.计算结果表明:W掺杂可以提高ZnO的载流子浓度,从而改善ZnO的导电性.掺杂后,吸收光谱发生红移现象,且光学性质变化集中在低能量区,而高能量区的光学性质没有太大变化,计算结果与相关实验结果相符合.最后,结合电子结构定性分析了光学性质的变化.  相似文献   

8.
V-N共掺纤锌矿ZnO光催化性质的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
桂青凤  崔磊  潘靖  胡经国 《物理学报》2013,62(8):87103-087103
基于第一性原理的密度泛函理论对V, N单掺杂和V-N共掺杂ZnO的电子结构和光学性质进行了对比研究. 结果表明:三种掺杂均在可见光区域出现光吸收增强的现象, 其中V-N共掺最为明显; 结合能的计算发现V-N共掺的ZnO体系相对V, N单掺而言结构更稳定, 因此V-N共掺的ZnO是一种稳定而有效的光催化剂. 进一步研究表明, 阴-阳离子共掺的形式可以很好地应用于光电化学领域, 并可以制备出高性能稳定的短波光电材料. 关键词: 基于ZnO的光催化剂 电子结构 光催化性质  相似文献   

9.
胡小颖  田宏伟  宋立军  朱品文  乔靓 《物理学报》2012,61(4):47102-047102
利用密度泛函理论, 计算了本征ZnO, Li-N共掺杂ZnO及Li-2N共掺杂ZnO的电子结构. 计算结果表明, Li-N及Li-2N共掺杂ZnO体系的Fermi能级均不同程度地进入价带顶, 并在Fermi能级附近形成浅的受主能级, 这说明, Li, N原子共掺杂可获得稳定的p型ZnO;与Li-N掺杂ZnO体系相比, Li-2N掺杂ZnO体系进一步提高了体系的载流子浓度, 更有利于获得p型ZnO.  相似文献   

10.
本文基于密度泛函理论(DFT),用第一性原理的方法,计算了ZnO在掺杂F和Na情况下的电子态密度、有效质量和形成能,研究分析了掺杂对ZnO的影响,结果表明:单掺F或Na并不能得到p型ZnO;而将F和Na共掺,能够使ZnO表现出p型导电的倾向.尤其当F和Na按1:2的原子比例共掺时,能够获得p型ZnO,这可以为实验上制备p型ZnO提供参考依据.  相似文献   

11.
Undoped and Cu doped ZnO nano/microrod arrays (N/MRAs) films were grown on seeded glass substrates by chemical bath deposition technique. The structural and morphological characterizations (X-ray diffraction and scanning electron microscopy) clearly illustrate that the pure ZnO N/MRAs has well-defined hexagonal prismatic cross-sectional crystallographic facets and its crystallographic plane is more vertically grown along (002) crystallographic direction. The horizontally aligned (100) crystallographic plane is induced at 20% Cu doping level. Morphological structure of ZnO N/MRAs changed into nanoplates/microballs with increasing of Cu doping level. Hexagonal crystal structure of undoped and Cu doped ZnO N/MRAs is then confirmed by µ-Raman scattering. Energy band gaps are found to be decreased with Cu doping and reached a minimum of 3.04 eV when doping level is 20%. The defect related peak intensity is suppressed in ZnO N/MRAs by Cu doping.  相似文献   

12.
侯清玉  曲灵丰  赵春旺 《物理学报》2016,65(5):57401-057401
与本文相近的Al-2N掺杂量的范围内, 对ZnO掺杂体系吸收光谱分布红移和蓝移两种实验结果均有文献报道, 但是, 迄今为止对吸收光谱分布尚未有合理的理论解释. 为了解决该问题, 本文采用基于密度泛函理论的广义梯度近似 平面波超软赝势方法, 用第一性原理构建了两种不同掺杂量的Zn0.98148Al0.01852O0.96296N0.03704和Zn0.96875Al0.03125O0.9375N0.0625超胞模型. 在几何结构优化的基础上, 对模型能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明, 在本文限定的掺杂量范围内, Al-2N掺杂量越增加, 掺杂体系的体积越减小, 体系总能量越升高, 体系稳定性越下降, 形成能越升高, 掺杂越难; 所有掺杂体系均转化为简并p型化半导体, 掺杂体系最小光学带隙均变窄,吸收光谱均发生红移; 同时发现掺杂量越增加, 掺杂体系最小光学带隙变窄越减弱, 吸收光谱红移越减弱. 研究表明: 要想实现Al-2N共掺在ZnO中最小光学带隙变窄、掺杂体系发生红移现象, 除了限制掺杂量外, 尺度长短也应限制; 其次, Al-2N掺杂量越增加,掺杂体系空穴的有效质量、浓度、 迁移率、电导率越减小,掺杂体系导电性能越减弱. 计算结果与实验结果的变化趋势相符合. 研究表明, Al-2N共掺在ZnO中获得的新型半导体材料可以用作低温端的温差发电功能材料.  相似文献   

13.
姚光锐  范广涵  郑树文  马佳洪  陈峻  章勇  李述体  宿世臣  张涛 《物理学报》2012,61(17):176105-176105
采用基于密度泛函理论的第一性原理赝势法对Te-N共掺杂ZnO体系的晶格结构、 杂质态密度和电子结构进行了理论分析.研究表明, N掺杂引起晶格收缩,而Te的掺入引起晶格膨胀, 从而减小晶格应力促进N的掺杂,并且Te由于电负性小于O而带正电, Te在ZnO中作为等电子施主而存在.研究发现, N掺杂体系中在费米能级附件形成窄的深受主能级, 而Te-N共掺体系中, N杂质带变宽,空穴更加离域,同时,空穴有效质量变小,受主能级变浅, 更有利于实现p型特性.因此, Te-N共掺有望成为一种更为有效的p型掺杂手段.  相似文献   

14.
Cu-doped ZnO nanorods with different Cu concentrations were synthesized through the vapor transport method. The synthesized nanorods were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV–vis spectroscopy. The XRD results revealed that Cu was successfully doped into ZnO lattice. The FE-SEM images showed that the undoped ZnO has needle like morphology whereas Cu-doped ZnO samples have rod like morphology with an average diameter and length of 60–90 nm and 1.5–3 μm respectively. The red shift in band edge absorption peak in UV-vis absorbance spectrum with increasing Cu content also confirm the doping of Cu in ZnO nanorods. The photocatalytic activity of pure and Cu-doped ZnO samples was studied by the photodegradation of resazurin (Rz) dye. Both pure ZnO and the Cu-doped ZnO nanorods effectively removed the Rz in a short time. This photodegradation of Rz followed the pseudo-first-order reaction kinetics. ZnO nanorods with increasing Cu doping exhibit enhanced photocatalytic activity. The pseudo-first-order reaction rate constant for 15 % Cu-doped ZnO is equal to 10.17×10?2min?1 about double of that with pure ZnO. The increased photocatalytic activity of Cu-doped ZnO is attributed to intrinsic oxygen vacancies due to high surface to volume ratio in nanorods and extrinsic defect due to Cu doping.  相似文献   

15.
Pure, Co doped and (Co, Cu) co-doped ZnO nanocrystals have been prepared by wet chemical route at room temperature to investigate the effect of Cu doping in Co doped ZnO nanocrystals . The nanocrystals have initially been characterized by X-ray diffraction, FTIR, Raman, optical absorption and EPR spectroscopy and the results were corroborated with DFT based electronic structure calculations. Magnetic properties of the samples have been investigated by studying their magnetic hysteresis behavior and temperature dependence of susceptibilities. Finally the local structure at the host and dopant sites of the nanocrystals have been investigated by Zn, Co and Cu K edges EXAFS measurements with synchrotron radiation to explain their experimentally observed magnetic properties.  相似文献   

16.
王云波  李公平  许楠楠  潘小东 《中国物理 B》2013,22(3):36102-036102
Room-temperature photoluminescence and optical transmittance spectroscopy of Co-doped (1×1014,5×1016, and 1×1017 cm-2) and Cu-doped (5×1016 cm-2) ZnO wafers irradiated by D-D neutrons (fluence of 2.9×1010 cm-2) have been investigated. After irradiation, the Co or Cu metal and oxide clusters in doped ZnO wafers are dissolved, and the würtzite structure of ZnO substrate for each sample remains unchanged and keeps in high c-axis preferential orientation. The degree of irradiation-induced crystal disorder reflected from absorption band tail parameter (E0) is far greater for doped ZnO than undoped one. Under the same doping concentration, the Cu-doped ZnO wafer has much higher irradiation-induced disorder than the Co-doped one. Photoluminescence measurements indicate that the introduction rate of both zinc vacancy and zinc interstitial is much higher for the doped ZnO wafer with high doping level than the undoped one. In addition, both crystal lattice distortion and defect complexes are suggested to be formed in doped ZnO wafers. Consequently, the Co- or Cu-doped ZnO wafer (especially with high doping level) exhibits very low radiation hardness compared with the undoped one, and the Cu-doped ZnO wafer is much less radiation-hard than the Co-doped one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号