首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A status report on rapidly advancing femtosecond laser technology, three-dimensional (3D) microstructuring by multiphoton illumination technique, is given. Taking its origin from multiphoton microscopy, this technique is now becoming an important microfabrication tool. In our work we apply near-infrared Ti:sapphire femtosecond laser pulses (at 800/780 nm) for 3D material processing. When tightly focused into the volume of a photosensitive material (or photoresist), they initiate 2PP process by, for example, transferring liquid into the solid state. This allows the fabrication of any computer generated 3D structure by direct laser “recording” into the volume of photosensitive material. 2PP of photosensitive materials irradiated by femtosecond laser pulses is now considered as enabling technology for the fabrication of 3D photonic crystals and photonic crystal templates. In particular, 2PP allows one to introduce defects at any desired locations, which is crucial for the practical applications. Recently, we studied possible applications of 2PP technique in biomedicine. 2PP is a very interesting technique for the fabrication of drug delivery systems, scaffolds for tissue engineering, and medical implants. These and other biomedical applications of 2PP will be reviewed.  相似文献   

2.
Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultrashort pulse widths and extremely high peak intensities. One of the most important features of femtosecond laser processing is that a femtosecond laser beam can induce strong absorption in even transparent materials due to nonlinear multiphoton absorption. This makes it possible to directly create three-dimensional (3D) microfluidic structures in glass that are of great use for fabrication of biochips. For fabrication of the 3D microfluidic structures, two technical approaches are being attempted. One of them employs femtosecond laser-induced internal modification of glass followed by wet chemical etching using an acid solution (Femtosecond laser-assisted wet chemical etching), while the other one performs femtosecond laser 3D ablation of the glass in distilled water (liquid-assisted femtosecond laser drilling). This paper provides a review on these two techniques for fabrication of 3D micro and nanofluidic structures in glass based on our development and experimental results.  相似文献   

3.
Femtosecond laser-assisted three-dimensional microfabrication in silica   总被引:7,自引:0,他引:7  
We demonstrate direct three-dimensional (3-D) microfabrication inside a volume of silica glass. The whole fabrication process was carried out in two steps:(i) writing of the preprogrammed 3-D pattern inside silica glass by focused femtosecond (fs) laser pulses and (ii) etching of the written structure in a 5% aqueous solution of HF acid. This technique allows fabrication of 3-D channels as small as 10mum in diameter inside the volume with any angle of interconnection and a high aspect ratio (10mum -diameter channels in a 100mum -thick silica slab).  相似文献   

4.
飞秒激光双光子微细加工技术及研究现状   总被引:4,自引:0,他引:4  
飞秒激光双光子微细加工技术以其特有的高精度三维微加工优势,成为微型机械加工领域新的发展方向之一。介绍了飞秒激光双光子微细加工技术的原理和应用的现状。结合目前已有的微细加工技术,对双光子微细加工技术的特点加以评述。简要报道了利用飞秒激光双光子微细加工技术的一些研究进展。探讨了飞秒激光双光子微细加工技术今后的发展方向及其存在的基本问题。  相似文献   

5.
We have developed a three-dimensional microfabrication method using thermo-sensitive resin. This method exploits the fact that polymerization of thermo-sensitive resins does not obey the law of linear superposition. Three-dimensional (3D) objects are created inside the thermo-sensitive resin by 3D scanning of the volume with a focused laser. Fabrication with the focus of the laser inside the resin can achieve good accuracy and high resolution of the structure. A fabrication system, which consisted of a CD-R pick-up laser and an XYZ stage, was built. Nonlinear polymerizations of the thermo-sensitive resin were verified by fabrication in various conditions of laser intensity and exposure time. In order to demonstrate the present method, a simple 3D microstructure was fabricated inside the resin. PACS 42.62.Cf; 42.70.Jk; 42.82.Cr  相似文献   

6.
We demonstrate that quasi-periodic void structure can be self-formed in transparent materials by single femtosecond laser pulse. Compared to the multiple-pulse induced structures, the single-pulse induced void structures are very short and may contain absent voids. The formation mechanisms have been discussed comparatively in detail. Based on this, a technique for high-speed and large-area fabrication of micro-void arrays in transparent materials has been presented. The experimental results show that 3D micro-void structures which contain over several hundred thousand voids in micrometer scales are produced in areas of square millimeters within a few minutes, and the periods of micro-void structures can be easily varied by processing parameters. This work has potential applications in 3D optical storage, photonic crystal and integrated optics, and provides novel insight into the interaction between the single femtosecond pulse and the transparent materials.  相似文献   

7.
飞秒激光在三维微细体系中的应用   总被引:3,自引:0,他引:3  
李承德  王丹翎  罗乐  杨宏  龚旗煌 《物理》2000,29(12):719-723
飞秒激光的超快特性使其能以极低的脉冲能量获得超强光场,并且激光加照区淀积的能量能以通过热扩散途径逸出辐照区域,其与透明物质相互作用是通过双光子或多光子吸收过程实现,故作用区限域于焦点核心很小体积内,因而在三维微制备及生物医学领域有着独到优势。文章介绍了飞秒激光应用于微爆炸、高密度三维光学数据存储、直写光波导及三维光子晶体制备、生物医学工程等方面的最新进展。飞秒激光三维微制备技术在微电子、计算机、光通信、生物医学等高技术领域有着广阔的应用前景。  相似文献   

8.
The microfabrication of films with femtosecond lasers has been researched widely for its high spatial resolution and sub-spot-size features. Compared with the common front-side ablation, femtosecond laser rear-side ablation mechanism of films is more complex due to the possible film breaking process. In this paper, the effect of film properties such as adhesion strength and cohesion strength on the material removing characteristics in femtosecond laser rear-side ablation of Cr film is investigated. The possible film breaking process in the rear-side ablation is analyzed firstly, and then some experiments with different films, the vapor deposited Cr film, the sputtered Cr film and the Cr film of photomask are performed. The experimental results indicate that the film properties are key factors influencing material removal characteristics for laser rear-side ablation. By varying film properties and laser fluence, femtosecond laser rear-side ablation technique can be applied in laser cleaning process and fabrication of nanostructures. The unique feature of rear-side ablation will widen the application of femtosecond laser micromachining technique.  相似文献   

9.
高斯  王子涵  滑建冠  李乾坤  李爱武  于颜豪 《物理学报》2017,66(14):147901-147901
蓝宝石具有超强硬度及耐腐蚀、耐高温、在紫外-红外波段具有良好的透光性等优点,在军工业以及医疗器械方面具有广泛的应用前景.然而这些优点又对蓝宝石的机械加工或化学腐蚀加工带来困难.飞秒激光脉冲具有热损伤小、加工分辨率高、材料选择广等特点,被广泛应用于固体材料改性和高精度三维微纳器件加工.本文提出了利用飞秒激光多光子吸收特性在蓝宝石表面实现超越光学衍射极限的精细加工.利用聚焦后的波长为343 nm的飞秒激光,配合高精密三维压电位移台,实现激光焦点和蓝宝石晶体的相对三维移动,在蓝宝石晶体衬底上进行精确扫描,得到了线宽约61 nm的纳米线,纳米线间的最小间距达到142 nm左右.利用等离子体模型解释了加工得到的纳米条纹的产生原因,研究了激光功率、扫描速度对加工分辨率的影响.最终本工作实现了超越光学衍射极限的加工精度,为实现利用飞秒激光对高硬度材料的微纳结构制备提供了参考.  相似文献   

10.
This paper provides an overview of the rather new field concerning the applications of femtosecond laser microstructuring of glass to optofluidics. Femtosecond lasers have recently emerged as a powerful microfabrication tool due to their unique characteristics. On the one hand, they enable to induce a permanent refractive index increase, in a micrometer‐sized volume of the material, allowing single‐step, three‐dimensional fabrication of optical waveguides. On the other hand, femtosecond‐laser irradiation of fused silica followed by chemical etching enables the manufacturing of directly buried microfluidic channels. This opens the intriguing possibility of using a single laser system for the fabrication and three‐dimensional integration of optofluidic devices. This paper will review the state of the art of femtosecond laser fabrication of optical waveguides and microfluidic channels, as well as their integration for high sensitivity detection of biomolecules and for cell manipulation.  相似文献   

11.
Femtosecond‐laser micromachining has been developed as one of the most efficient techniques for direct three‐dimensional microfabrication of transparent optical materials. In integrated photonics, by using direct writing of femtosecond/ultrafast laser pulses, optical waveguides can be produced in a wide variety of optical materials. With diverse parameters, the formed waveguides may possess different configurations. The paper by F. Chen and J.R. Vázquez de Aldana (pp. 251–275) focuses on crystalline dielectric materials, and is a review of the state‐of‐the‐art in fabrication, characterization and applications of femtosecond‐laser micromachined waveguiding structures in optical crystals and ceramics.  相似文献   

12.
13.
基于金属量子点的局域等离激元效应,提出一种新的固体介质表面微结构的制备方法。利用飞秒激光辐照涂有Cu2S量子点的K9玻璃,在其表面制备出了类似光栅结构的亚波长周期性条纹。当飞秒激光的中心波长为1300 nm、脉宽为50 fs、激光功率为230 mW时,玻璃表面的亚波长周期性条纹结构尺寸为34 nm。通过模拟得到了附有Cu2S量子点玻璃表面的近场分布,模拟结果表明,出现这种周期性条纹结构是入射飞秒激光与量子点产生的等离激元场之间产生干涉引起的。该制备方法可以降低透明介质微构造的激光功率阈值,改善了透明基质表面的微纳结构加工工艺。  相似文献   

14.
True three‐dimensionally (3D) integrated biochips are crucial for realizing high performance biochemical analysis and cell engineering, which remain ultimate challenges. In this paper, a new method termed hybrid femtosecond laser microfabrication which consists of successive subtractive (femtosecond laser‐assisted wet etching of glass) and additive (two‐photon polymerization of polymer) 3D microprocessing was proposed for realizing 3D “ship‐in‐a‐bottle” microchip. Such novel microchips were fabricated by integrating various 3D polymer micro/nanostructures into flexible 3D glass microfluidic channels. The high quality of microchips was ensured by quantitatively investigating the experimental processes containing “line‐to‐line” scanning mode, improved annealing temperature (645°C), increased prebaking time (18 h for 1mm‐length channel), optimal laser power (1.9 times larger than that on the surface) and longer developing time (6 times larger). The ship‐in‐a‐bottle biochips show high capabilities to provide simultaneous filtering and mixing with 87% efficiency in a shorter distance and on‐chip synthesis of ZnO microflower particles.  相似文献   

15.
Femtosecond laser is a perfect laser source for materials processing when high accuracy and small structure size are required. Due to the ultra short interaction time and the high peak power, the process is generally characterized by the absence of heat diffusion and, consequently molten layers. Various induced structures have been observed in materials after the femtosecond laser irradiation. Here, we report on fabrication of micro-optical devices by the femtosecond laser. 1) formation of optical waveguide with internal loss less than 0.5dB/cm in the wavelength region from 1.2 to 1.6 mm, by translating a silica glass perpendicular to the axis of the focused femtosecond laser beam; 2) nano-scale valence state manipulation of active ions inside transparent materials; 3) space-selective precipitation and control of metal nanoparticles inside transparent materials; The mechanisms and applications of the femtosecond laser induced phenomena were also discussed.  相似文献   

16.
飞秒激光精密微纳加工的研究进展   总被引:4,自引:0,他引:4  
朱江峰  魏志义 《物理》2006,35(8):679-683
飞秒激光由于其超快时间特性和超高峰值功率特性在精密微纳加工领域引起了人们广泛的重视.在与物质的相互作用中它能快速、准确地将能量作用在特定的区域内,从而可以获得极高的分辨率和加工精度。文章综述了飞秒激光精密微纳加工的最新研究进展,分别就飞秒激光烧蚀微加工和飞秒激光双光子聚合产生三维微纳结构进行了介绍,阐述了各自的物理机制.最后对飞秒激光微纳加工的研究前景做了初步探讨。  相似文献   

17.
We report on the fabrication of hollow optical waveguides in fused silica using femtosecond laser micromachining. We show that in such hollow waveguides, high-intensity femtosecond laser beams can be guided with low optical loss. Our technique, which was established earlier for fabrication of optofluidic structures in glass, can ensure a high smoothness at the inner surfaces of the hollow waveguides and provide the unique capability of fabrication of hollow waveguides with complex geometries and configurations. A transmission of ∼90% at 633 nm wavelength is obtained for a 62-mm-long hollow waveguide with an inner diameter of ∼250 μm. In addition, nonlinear propagation of femtosecond laser pulses in the hollow waveguide is demonstrated, showing that the spectral bandwidth of the femtosecond pulses can be broadened from ∼27.2 to ∼55.7 nm.  相似文献   

18.
We report on a new technique to reconstruct the 3D dielectric function change in transparent dielectric materials and the application of the technique for on-line monitoring of refractive index modification in BK7 glass during direct femtosecond laser microfabrication. The complex optical field scattered from the modified region is measured using two-beam, single-shot interferogram and the distribution of the modified refractive index is reconstructed by numerically solving the inverse scattering problem in Born approximation. The optical configuration suggested is further development of digital holographic microscopy. It takes advantage of high spatial resolution and almost the same optical paths for both interfering beams, and allows ultrafast time resolution.  相似文献   

19.
A fused silica glass micro-channel can be formed by chemical etching after femtosecond laser irradiation, and the successful etching probability is only 48%. In order to improve the micro-channel fabrication success probability,the method of processing a high-temperature lattice by a femtosecond laser pulse train is provided. With the same pulse energy and scanning speed, the success probability can be increased to 98% by optimizing pulse delay.The enhancement is mainly caused by the nanostructure, which changes from a periodic slabs structure to some intensive and loose pore structures. In this Letter, the optimum pulse energy distribution ratio to the etching is also investigated.  相似文献   

20.
A microlens array (MLA) was applied for femtosecond laser microfabrication. Two-dimensional periodic patterns that corresponded to the arrangement of lenses in the MLA were recorded by ablation on a glass surface. The two-dimensional periodic patterns were recorded by a single exposure without scanning of the laser beam or the sample, and worked as a grating. Optical resizing of the patterns and high efficiency of fabrication are demonstrated and discussed. PACS 42.82.Cr; 07.60.Pb; 42.62.Cf  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号