首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Island-growth of SiCGe films on SiC   总被引:1,自引:0,他引:1       下载免费PDF全文
李连碧  陈治明  林涛  蒲红斌  李青民  李佳 《中国物理》2007,16(11):3470-3474
SiCGe ternary alloys have been grown on SiC by hot-wall low-pressure chemical vapour deposition. It has been found that the samples cxhibit an island configuration, and the island growth of SiCGe epilayer depends on the processing parameters such as the growth temperature. When the growth temperature is comparatively low, the epilayer has two types of islands: onc is spherical island; another is cascading triangular island. With the increase of the growth temperature, the islands change from spherical to cascading triangular mode. The size and density of the islands depend on the growth duration and GeH4 flow-rate. A longer growth time and a larger GeH4 flow-rate can increase the size and density of the island in thc initial stage of the epitaxy. In our case, The optimal growth for a high density of uniform islands occurred at a growth temperature of 1100℃ for l-minute growth, with 10 SCCM GeH4, resulting in a narrow size distribution (about 30nm diameter) and high density (about 3.5 ×10^10 dots/cm2). The growth follows Stranski- Krastanov modc (2D to 3D modc), both of the islands and the 2D growth layer have face-centred cubic structure, and the critical thickness of the 2D growth layer is only 2.5 nm.[第一段]  相似文献   

2.
We report high-resolution scanning tunneling microscopy(STM)study of nano-sized Pb islands grown on SrTiO3,where three distinct types of gaps with different energy scales are revealed.At low temperature,we find that the superconducting gap(△s)in nano-sized Pb islands is significantly enhanced from the one in bulk Pb,while there is no essential change in superconducting transition temperature Tc,giving rise to a larger BCS ratio 2△s/kBTc^8.31 and implying stronger electron-phonon coupling.The stronger coupling can originate from the interface electron-phonon interactions between Pb islands and SrTiO3.As the superconducting gap is totally suppressed under applied magnetic field,the Coulomb gap with apparent V-shape emerges.Moreover,the size of Coulomb gap(Ac)depends on the lateral size of Pb islands(R)with △c-1/R^035,indicating that quantum size effect can significantly influence electronic correlations.Our experimental results shall shed important light on the interplay among superconductivity,quantum size effect and correlations in nano-sized strong-coupling superconductors.  相似文献   

3.
The newly discovered superconductivity in infinite-layer nickelate superconducting films has attracted much attention,largely because their crystalline and electronic structures are similar to those of high-T_c cuprate superconductors.The upper critical field can provide a great deal of information on the subject of superconductivity,but detailed experimental data are still lacking for these films.We present the temperature-and angle-dependence of resistivity,measured under different magnetic fields H in Nd_(0.8)Sr_(0.2)NiO_2 thin films.The onset superconducting transition occurs at about 16.2 K at 0 T.Temperature-dependent upper critical fields,determined using a criterion very close to the onset transition,show a clear negative curvature near the critical transition temperature,which can be explained as a consequence of the paramagnetically limited effect on superconductivity.The temperaturedependent anisotropy of the upper critical field is obtained from resistivity data,which yields a value decreasing from 3 to 1.2 with a reduction in temperature.This can be explained in terms of the variable contribution from the orbital limit effect on the upper critical field.The angle-dependence of resistivity at a fixed temperature,and at different magnetic fields,cannot be scaled to a curve,which deviates from the prediction of the anisotropic Ginzburg-Landau theory.However,at low temperatures,the resistance difference can be scaled via the parameter Hβ| cos θ|(β=6-1),with θ being the angle enclosed between the c-axis and the applied magnetic field.As the first detailed study of the upper critical field of nickelate thin films,our results clearly indicate a small anisotropy,and a paramagnetically limited effect,in terms of superconductivity,in nickelate superconductors.  相似文献   

4.
Cu(In, Ga)Se2 thin films are deposited on Mo-coated glass substrates by Se vapour selenization of sputtered metallic precursors in the atmosphere of Ar gas flow under a pressure of about 10 Pa. The in situ heat treatment of as-grown precursor leads to the formation of a better alloy. During selenization, the growth of CuInSe2 phase preferably proceeds through Se-poor phases as CuSe and InSe at relatively low substrate temperature of 250℃, due to the absence of In2Se3 at intermediate stage at low reactor pressure. Subsequently, the Cu(In,Ga)Se2 phase is produced by the reactive diffusion of CuInSe2 with a Se-poor GaSe phase at high temperature of up to 560℃. The final film exhibits smooth surface and large grain size. The absorber is used to fabricate a glass/Mo/Cu(In, Ga)Se2/CdS/ZnO cell with the total-area efficiency of about 7%. The low open-circuit voltage value of the cell fabricated should result from the nonuniform distribution of In and Ga in the absorber, due to the diffusion-controlled reaction during the phase formation. The films, as well as devices, are characterized.  相似文献   

5.
The thermodynamic properties of an In Sb quantum dot have been investigated in the presence of Rashba spin–orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy,magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin–orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.  相似文献   

6.
Single crystals of hexagonal structure Mn_2P are synthesized by Sn flux for the first time. Transport and magnetic properties have been performed on the single crystals, which is an antiferromagnet with Neel temperature 103 K.Obvious anisotropy of resistivity is observed below the Neel temperature, which is manifested by metallic behavior with a current along the C-axis and semiconducting behavior with a current along the α-axis. The negative slope of temperature-dependent resistivity is observed above the Neel temperature in both α and C directions. Strong anisotropy of magnetic susceptibility is also evident from the magnetization measurements. A weak metamagnetic transition is observed only in α-axis plane at high magnetic field near 50–60 K compared to the C-axis. We believe these strong anisotropies of magnetic and transport properties are due to the anisotropy of spin arrangement.Mn_2P could be a candidate for exploration of possible superconductivity due to the low spin state.  相似文献   

7.
We report on temperature-programmed growth of graphene islands on Ru(0001) at annealing temperatures of 700°C,800°C,and 900°C.The sizes of the islands each show a nonlinear increase with the annealing temperature.In 700°C and 800°C annealings,the islands have nearly the same sizes and their ascending edges are embedded in the upper steps of the ruthenium substrate,which is in accordance with the etching growth mode.In 900°C annealing,the islands are much larger and of lower quality,which represents the early stage of Smoluchowski ripening.A longer time annealing at 900°C brings the islands to final equilibrium with an ordered moir’e pattern.Our work provides new details about graphene early growth stages that could facilitate the better control of such a growth to obtain graphene with ideal size and high quality.  相似文献   

8.
《中国物理 B》2021,30(7):76301-076301
Based on density functional first-principles calculations and anisotropic Eliashberg equations, we have investigated the electronic structure, lattice dynamics, and phonon-mediated superconductivity in newly synthesized layered compound Sr BC under pressure. Different from Li BC and Mg B2, our calculations surprisingly reveal that Sr BC is isotropic in compressibility, due to the accumulation of substantial electrons in the interstitial region. We find that the Sr phonons strongly couple with B-2 pz orbital and the interstitial states, giving rise to a two-gap superconductivity in Sr BC, whose transition temperature shows an inverted V-shaped dependence on pressure. The maximal transition temperature is about 22 K at50 GPa. On both sides of 50 GPa, the transition temperature exhibits quasi-linear variation with positive and negative slopes, respectively. Such a variation of transition temperature is infrequent among phonon-mediated superconductors. The competition between enhanced electron–phonon matrix element and hardened phonons plays an essential role in governing the behavior of the critical temperature.  相似文献   

9.
Despite the recent discovery of superconductivity in Nd_(1-x)Sr_xNiO_2 thin films,the absence of superconductivity and antiferromagnetism in their bulk materials remains a puzzle.Here we report the ~1H NMR measurements on powdered Nd_(0.85)Sr_(0.15)NiO_2 samples by taking advantage of the enriched proton concentration after hydrogen annealing.We find a large full width at half maximum of the spectrum,which keeps increasing with decreasing the temperature T and exhibits an upturn behavior at low temperatures.The spin-lattice relaxation rate ~1T_1~(-1) is strongly enhanced when lowering the temperature,developing a broad peak at about 40 K,then decreases following a spin-wave-like behavior ~1T_1~(-1) ∝ T~2 at lower temperatures.These results evidence a short-range glassy antiferromagnetic ordering of magnetic moments below 40 K and dominant antiferromagnetic fluctuations extending to much higher temperatures.Our findings reveal the strong electron correlations in bulk Nd_(0.8)5Sr_(0.15)NiO_2,and shed light on the mechanism of superconductivity observed in films of nickelates.  相似文献   

10.
The approximate method to treat the practical quantum anharmonic solids proposed by Hardy,Lacks and Shukla is reformulated with explicit physical meanings.It is shown that the quantum effect is important at low temperature,it can be treated in the harmonic framework.and the anharmonic effect is important at high temperature and tends to zero at low temperature,it can be treated by using a classical approximation.The alternative formulation is easier for various applications,and is applied to a Debye-Grueneisen solid with the generalized Lennard-Jones intermolecular interaction.The expressions for the Debys temperature and Grueneisen parameter as a function of volume are analytically derived.The analytic equation of state is applied to predict the thermodynamic properties of solid xenon at normal-pressure with the nearest-neighbour Lennard-Jones interaction,and is further applied to research the properties of solid xenon and krypton at high pressure by using an all-neighbour Lennard-Jones interaction.The theoretical results are in agreement with the experiments.  相似文献   

11.
薛军帅  郝跃  张进成  倪金玉 《中国物理 B》2010,19(5):57203-057203
Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is carried out by high resolution x-ray diffraction, photoluminescence and Raman spectroscopy. It is found that the crystalline quality of GaN epilayers is improved significantly by using the high temperature AlN interlayers, which prevent the threading dislocations from extending, especially for the edge type dislocation. The analysis results based on photoluminescence and Raman measurements demonstrate that there exist more compressive stress in GaN epilayers with high temperature AlN interlayers. The band edge emission energy increases from 3.423~eV to 3.438~eV and the frequency of Raman shift of $E_{2 }$(TO) moves from 571.3~cm$^{ - 1}$ to 572.9~cm$^{ - 1}$ when the temperature of AlN interlayers increases from 700~$^{\circ}$C to 1050~$^{\circ}$C. It is believed that the temperature of AlN interlayers effectively determines the size, the density and the coalescence rate of the islands, and the high temperature AlN interlayers provide large size and low density islands for GaN epilayer growth and the threading dislocations are bent and interactive easily. Due to the threading dislocation reduction in GaN epilayers with high temperature AlN interlayers, the approaches of strain relaxation reduce drastically, and thus the compressive stress in GaN epilayers with high temperature AlN interlayers is high compared with that in GaN epilayers with low temperature AlN interlayers.  相似文献   

12.
In the present work, we explore the solar-blind ultraviolet(UV) photodetectors(PDs) with enhanced photoresponse,fabricated on Ga/Ga_2O_3 nanocomposite films. Through pre-burying metal Ga layers and thermally post-annealing the laminated Ga2 O3/Ga/Ga_2O_3 structures, Ga/Ga_2O_3 nanocomposite films incorporated with Ga nanospheres are obtained. For the prototype PD, it is found that the photocurrent and photoresponsivity will first increase and then decrease monotonically with the thickness of the pre-buried Ga layer increasing. Each of all PDs shows a spectrum response peak at 260 nm, demonstrating the ability to detect solar-blind UV light. Adjustable photoresponse enhancement factors are achieved by means of the surface plasmon in the nanocomposite films. The PD with a 20 nm thick Ga interlayer exhibits the best solar-blind UV photoresponse characteristics with an extremely low dark current of 8.52 p A at 10-V bias, a very high light-to-dark ratio of ~ 8 × 10~5, a large photoresponsivity of 2.85 A/W at 15-V bias, and a maximum enhancement factor of ~ 220. Our research provides a simple and practical route to high performance solar-blind UV PDs and potential applications in the field of optoelectronics.  相似文献   

13.
A GaN interlayer between low temperature (LT) A1N and high temperature (PIT) A1N is introduced to combine HT AIN, LT A1N and composition-graded A1GaN as a novel buffer layer for GaN films grown on Si (111) substrates. The crystal quality, surface morphology and strain state of the GaN film with this new buffer are compared with those of GaN grown on a conventional buffer structure. By changing the thickness of LT A1N, the crystal quality is optimized and the crack-free GaN film is obtained. The in-plane strain in the GaN film can be changed from tensile to compressive strain with the increase in LT A1N thickness.  相似文献   

14.
Shubnikov-de Haas (SdH) measurements are performed over a temperature range of 1.5-20 K in Al0.22 Ga0.78N/GaN heterostructures with two subbands occupied. In addition to an intermodulation between two sets of SdH oscillations from the first and second subbands, a beating in oscillatory magnetoresistance at 12K is observed, due to the mixing of the first subband SdH oscillations and ‘magnetointersubband‘ (MIS) oscillations. A phase shift of π between the SdH and MIS oscillations is also clearly identified. Our experimental results, i.e. that the SdH oscillations dominate at low temperature and MIS oscillations dominate at high temperature, fully comply with the expected behaviour of MIS oscillations.  相似文献   

15.
The spin-1 Blume-Capel model with transverse and longitudinal external magnetic fields h, in addition to a longitudinal random crystal field D, is studied in the mean-field approximation. It is assumed that the crystal field is either turned on with probability p or turned off with probability 1 p on the sites of a square lattice. Phase diagrams are then calculated on the reduced temperature crystal field planes for given values of γ=Ω/J and p at zero h. Thus, the effect of changing γ and p are illustrated on the phase diagrams in great detail and interesting results are observed.  相似文献   

16.
Electric transport and scanning tunneling spectrum(STS)have been investigated on polycrystalline samples of the new superconductor Bi4O4S3.A weak insulating behavior in the resistive curve has been induced in the normal state when the superconductivity is suppressed by applying a magnetic field.Interestingly,a kink appears on the temperature dependence of resistivity near 4 K at all high magnetic fields above 1 T when the bulk superconductivity is completely suppressed.This kink associated with the upper critical field as well as the wide range of excess conductance at low fields and high temperatures is explained as the possible evidence of strong superconducting fluctuation.From the tunneling spectra,a superconducting gap of about 3 meV is frequently observed yielding a ratio of 2Δ/kB TC~16.6.This value is much larger than the one predicted by the BCS theory in the weak coupling regime(2Δ/kB TC~3.53),which suggests the strong coupling superconductivity in the present system.Furthermore,the gapped feature persists on the spectra until 14 K in the STS measurement,which suggests a prominent fluctuation region of superconductivity.Such a superconducting fluctuation can survive at very high magnetic fields,which are far beyond the critical fields for bulk superconductivity as inferred both from electric transport and tunneling measurements.  相似文献   

17.
王继飞  李宏建  周子游  李雪勇  刘菊  杨海艳 《中国物理 B》2010,19(11):117310-117310
This paper experimentally and theoretically investigates the effect of the underlayer medium on tuning of the surface plasmon resonance (SPR) wavelength of silver island films,and the effect of substrate temperature on the morphologies and optical properties of the films.From the absorption spectra of single Ag with various thickness and overcoated (Ag/TiO 2) films deposited on glass substrates at various substrate temperatures by RF magnetron sputtering,we demonstrate that the surface plasmon resonance wavelength can be made tunable by changing the underlayer medium,the thickness of metal layer and the substrate temperature.By varying substrate temperatures,the interparticle coupling effects on plasmon resonances of nanosilver particles enhance as the spacing between the particles reduces.When the substrate temperature is up to 500 C,the absorption peak decreases sharply and shifts to shorter wavelength side due to the severe coalescence between silver islands in the film.  相似文献   

18.
Our recent progress in the fabrication of FeSe and KxFe2_ySe2 ultra thin films and the understanding of their superconductivity properties is reviewed. The growth of high-quality FeSe and KxFe2_ySe2 films is achieved in a well controlled manner by molecular beam epitaxy. The high-quality stoichiometric and superconducting crystalline thin films allow us to investigate the intrinsic superconductivity properties and the interplay between the superconductivity and the film thickness, the local structure, the substrate, and magnetism. In situ low-temperature scanning tunneling spectra reveal the nodes and the twofold symmetry in FeSe, high-temperature superconductivity at the FeSe/SrTiO3 interface, phase separation and magnetic order in KxFe2_ySe2, and the suppression of superconductivity by twin boundaries and Fe vacancies. Our findings not only provide fundamental information for understanding the mechanism of unconventional superconductivity, but also demonstrate a powerful way of engineering superconductors and raising the transition temperature.  相似文献   

19.
任凡  郝智彪  胡健楠  张辰  罗毅 《中国物理 B》2010,19(11):117101-117101
In this paper,the effects of thickness of AlN nucleation layer grown at high temperature on AlN epi-layer crystalline quality are investigated.Crack-free AlN samples with various nucleation thicknesses are grown on sapphire substrates by plasma-assisted molecular beam epitaxy.The AlN crystalline quality is analysed by transmission electron microscope and x-ray diffraction (XRD) rocking curves in both (002) and (102) planes.The surface profiles of nucleation layer with different thicknesses after in-situ annealing are also analysed by atomic force microscope.A critical nucleation thickness for realising high quality AlN films is found.When the nucleation thickness is above a certain value,the (102) XRD full width at half maximum (FWHM) of AlN bulk increases with nucleation thickness increasing,whereas the (002) XRD FWHM shows an opposite trend.These phenomena can be attributed to the characteristics of nucleation islands and the evolution of crystal grains during AlN main layer growth.  相似文献   

20.
Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe_2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)structure of Sn surface is obtained.Superconductivity is also detected on the fcc-Sn(111)surface,and the size of superconducting gap on the Sn surface is nearly the same as that on the superconducting substrate.Furthermore,phase transition occurs from fcc-Sn(111)toβ-Sn(001)by keeping the sample at room temperature for a certain time.Due to the strain relaxation on theβ-Sn islands,both the in-plane unit cell and out-of-plane structures distort,and the height of surface atoms varies periodically to form a universal ripple structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号