首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ultrasound propagation in cancellous bone (porous media) under the condition of closed pore boundaries was investigated. A cancellous bone and two plate-like cortical bones obtained from a racehorse were prepared. A water-immersion ultrasound technique in the MHz range and a three-dimensional elastic finite-difference time-domain (FDTD) method were used to investigate the waves. The experiments and simulations showed a clear separation of the incident longitudinal wave into fast and slow waves. The findings advance the evaluation of bones based on the two-wave phenomenon for in vivo assessment.  相似文献   

2.
In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.  相似文献   

3.
Hosokawa A 《Ultrasonics》2006,44(Z1):e227-e231
The trabecular frame of cancellous bone has a high degree of porosity, anisotropy and inhomogeneity. The propagation of ultrasonic waves in cancellous bone is significantly affected by the trabecular structure. In this paper, two two-dimensional finite-difference time-domain (FDTD) methods, which were the popular viscoelastic FDTD method for a viscoelastic medium and Biot's FDTD method for a fluid-saturated porous medium, have been applied to numerically analyze the ultrasonic pulse waves propagating through bovine cancellous bone in the directions parallel and perpendicular to the trabecular alignment. The Biot's fast and slow longitudinal waves, which were identified in previous experiments for the propagation parallel to the trabecular orientation, could be analyzed using Biot's FDTD method rather than the viscoelastic FDTD method. For the single wave propagation in the perpendicular direction, on the other hand, the viscoelastic FDTD result was found to be in more good agreement with the experimental result.  相似文献   

4.
In testing cancellous bone using ultrasound, two types of longitudinal Biot’s waves are observed in the received signal. These are known as fast and slow waves and their appearance depend on the alignment of bone trabeculae in the propagation path and the thickness of the specimen under test (SUT). They can be used as an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. However, the identification of these waves in the received signal can be difficult to achieve.In this study, ultrasonic wave propagation in a 4 mm thick bovine cancellous bone in the direction parallel to the trabecular alignment is considered. The observed Biot’s fast and slow longitudinal waves are superimposed; which makes it difficult to extract any information from the received signal. These two waves can be separated using the space alternating generalized expectation maximization (SAGE) algorithm. The latter has been used mainly in speech processing.In this new approach, parameters such as, arrival time, center frequency, bandwidth, amplitude, phase and velocity of each wave are estimated. The B-Scan images and its associated A-scans obtained through simulations using Biot’s finite-difference time-domain (FDTD) method are validated experimentally using a thin bone sample obtained from the femoral-head of a 30 months old bovine.  相似文献   

5.
Pulse transmission ultrasound was used to determine the longitudinal wave speed along the direction of trabecular alignment in 32 water-saturated anisotropic tibial bovine cancellous bone samples and in one cortical bone sample also from the bovine tibia. These results are compared to published ultrasound wave-speed data obtained from bovine femoral specimens. Nonlinear regression was used to fit Biot's theory to the data. The correlation coefficient for regression analysis between the experimental ultrasound velocities and the velocities predicted by Biot's theory was r = 0.78.  相似文献   

6.
他得安  王威琪 《应用声学》2013,32(3):199-204
超声背散射法评价松质骨状况及诊断骨质疏松症是近年来医学超声领域内的研究热点之一,现已取得了显著的进展。本文将介绍近年来超声背散射法及其参量评价松质骨状况的研究进展,并分析超声背散射相关参量频谱质心偏移量(SCS)和平均骨小梁间距(TbSp)与骨矿密度(BMD)的相关性。研究结果表明,超声背散射参量与BMD有较高的相关性。最后提出了将来研究中需要努力的方向。  相似文献   

7.
The last decade has seen a surge in the development of axial transmission QUS (Quantitative UltraSound) technologies for the assessment of long bones using various modes of acoustic waves. The condition of cortical bones and the development of osteoporosis are determined by numerous mechanical, micro-structural, and geometrical or macro-structural bone properties like hardness, porosity and cortical thickness. Such complex manifestations of osteoporosis require the evaluation of multiple parameters with different sensitivities to the various properties of bone that are affected by the disease. This objective may be achieved by using a multi-frequency ultrasonic examination The ratio of the acoustic wavelength to the cortical thickness can be changed by varying the frequency of the ultrasonic pulse propagating through the long bone that results in the change in composition of the induced wave comprised of a set of numerous modes of guided, longitudinal, and surface acoustic waves. The multi-frequency axial transmission QUS method developed at Artann Laboratories (Trenton, NJ) is implemented in the Bone Ultrasonic Scanner (BUSS). In the current version of the BUSS, a train of ultrasonic pulses with 60, 100, 400, 800, and 1200 kHz frequencies is used. The developed technology was tested on a variety of bone phantoms simulating normal, osteopenic, and osteoporotic bones. The results of this study confirm the feasibility of the multi-frequency approach for the assessment of the processes leading to osteoporosis.  相似文献   

8.
This paper describes preliminary observations of ultrasonic wave propagation in air-saturated defatted cancellous bone from the human vertebra. Using a broadband pulse transmission system, attenuation and phase velocity were measured over a wide frequency range (100 kHz-1 MHz). The observed behaviour was consistent with that expected for the decoupled slow wave predicted by Biot's theory. Velocity was lower than that of free air, and there was marked frequency-dependent attenuation and velocity dispersion. The tortuosity (alpha) of the trabecular microstructure was estimated from the high frequency limit of the dispersion curve, with a mean value of alpha = 1.040 +/- 0.004 obtained in five specimens. Ultrasonic measurements in air represent a valuable new approach, capable of yielding parameters that directly characterise bone structure. Furthermore, they may give useful insights into wave propagation in bone in vivo, where the trabecular framework is saturated with marrow fat rather than air.  相似文献   

9.
S Singh 《Ultrasonics》1989,27(2):107-113
The knowledge of the cortical bone thickness profile in human bone has a two-fold clinical significance: to study the stress occurring in a loaded bone structure to optimize the design of prostheses; and to predict the onset of advanced bone disease such as osteoporosis. In this study, the cortical bone thickness in three embalmed human cadaver femora were measured non-destructively using an ultrasonic technique. These thickness measurements were also made using a computed tomographic (CT) scanning method. Subsequently bones were sectioned and the actual bone thicknesses in the same regions were measured using a micrometer. The correlation coefficient between the actual thickness and the ultrasonically measured thickness was 0.95 and with the CT was 0.62. Thus, these results show that, under present experimental conditions, ultrasonic thickness measurements compare well with the micrometer actual thickness results. This technique, when fully developed, can be used as a non-destructive tool for quantitative cortical bone thickness measurements. Moreover, the ultrasonic technique does not use ionizing radiation.  相似文献   

10.
The influence of cancellous bone microstructure on the ultrasonic wave propagation of fast and slow waves was experimentally investigated. Four spherical cancellous bone specimens extracted from two bovine femora were prepared for the estimation of acoustical and structural anisotropies of cancellous bone. In vitro measurements were performed using a PVDF transducer (excited by a single sinusoidal wave at 1 MHz) by rotating the spherical specimens. In addition, the mean intercept length (MIL) and bone volume fraction (BV/TV) were estimated by X-ray micro-computed tomography. Separation of the fast and slow waves was clearly observed in two specimens. The fast wave speed was strongly dependent on the wave propagation direction, with the maximum speed along the main trabecular direction. The fast wave speed increased with the MIL. The slow wave speed, however, was almost constant. The fast wave speeds were statistically higher, and their amplitudes were statistically lower in the case of wave separation than in that of wave overlap.  相似文献   

11.
Our goal is to assess the potential of computational methods as an alternative to analytical models to predict the two longitudinal wave modes observed in cancellous bone and predicted by the Biot theory. A three-dimensional (3D) finite-difference time-domain method is coupled with 34 human femoral trabecular microstructures measured using microcomputed tomography. The main trabecular alignment (MTA) and the degree of anisotropy (DA) were assessed for all samples. DA values were comprised between 1.02 and 1.9. The influence of bone volume fraction (BV/TV) between 5% and 25% on the properties of the fast and slow waves was studied using a dedicated image processing algorithm to modify the initial 3D microstructures. A heuristic method was devised to determine when both wave modes are time separated. The simulations (performed in three perpendicular directions) predicted that both waves generally overlap in time for a direction of propagation perpendicular to the MTA. When these directions are parallel, both waves are separated in time for samples with high DA and BV/TV values. A relationship was found between the least bone volume fraction required for the observation of nonoverlapping waves and the degree of anisotropy: The higher the DA, the lower the least BV/TV.  相似文献   

12.
In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.  相似文献   

13.
Ultrasonic backscatter signals from the cancellous bone can be used to diagnose osteoporosis effectively due to its ability to provide the information of bone microstructure. Mean trabecular bone spacing(MTBS)is one of the important parameters for characterization of bone microstructure.This paper proposed a MTBS estimating method based on the fundamental frequency estimation,which was applied to backscatter signals from simulations, and in vitro bovine trabeculae.The estimated MTBS were compared with those of simplified inverse filter tracking(SIFT)algorithm and autoregressive(AR)cepstrum method.The results demonstrated that the proposed method is very robust for the MTBS estimation with more precise estimates and smaller estimated variance in the presence of a small signal-to-noise ratio (SNR),and a large scattering strength ratio of diffuse scatterers to regular ones.  相似文献   

14.
Finite-difference numerical simulation of ultrasound propagation in complex media such as cancellous bone represents a fertile alternative to analytical approaches because it can manage the complex 3D bone structure by coupling the numerical computation with 3D numerical models of bone microarchitecture obtained from high-resolution imaging modalities. The objective of this work was to assess in silico the sensitivity of ultrasound parameters to controlled changes of microarchitecture and variation of elastic constants. The simulation software uses a finite-difference approach based on the Virieux numerical scheme. An incident plane wave was propagated through a volume of bone of approximately 5 x 5 x 8 mm(3). The volumes were reconstructed from high-resolution micro-computed tomography data. An iterative numerical scenario of "virtual osteoporosis" was implemented using a dedicated image processing algorithm in order to modify the initial 3D microstructures. Numerical computations of wave propagation were performed at each step of the process. The sensitivity to bone material properties was also tested by changing the elastic constants of bone tissue. Our results suggest that ultrasonic variables (slope of the frequency-dependent attenuation coefficient and speed of sound) are mostly influenced by bone volume fraction. However, material properties and structure also appear to play a role. The impact of modifications of the stiffness coefficients remained lower than the variability caused by structural variations. This study emphasizes the potential of numerical computations tools coupled to realistic 3D structures to elucidate the physical mechanisms of interaction between ultrasound and bone structure and to assess the sensitivity of ultrasound variables to different bone properties.  相似文献   

15.
An experimental model which can simulate physical changes that occur during aging was developed in order to evaluate the effects of change of mineral content and microstructure on ultrasonic properties of bovine cancellous bone. Timed immersion in hydrochloric acid was used to selectively alter the mineral content. Scanning electron microscopy and histological staining of the acid-treated trabeculae demonstrated a heterogeneous structure consisting of a mineralized core and a demineralized layer. The presence of organic matrix contributed very little to normalized broadband ultrasound attenuation (nBUA) and speed of sound. All three ultrasonic parameters, speed of sound, nBUA and backscatter coefficient, were sensitive to changes in apparent density of bovine cancellous bone. A two-component model utilizing a combination of two autocorrelation functions (a densely populated model and a spherical distribution) was used to approximate the backscatter coefficient. The predicted attenuation due to scattering constituted a significant part of the measured total attenuation (due to both scattering and absorption mechanisms) for bovine cancellous bone. Linear regression, performed between trabecular thickness values and estimated from the model correlation lengths, showed significant linear correlation, with R(2)=0.81 before and R(2)=0.80 after demineralization. The accuracy of estimation was found to increase with trabecular thickness.  相似文献   

16.
Large bones from many anatomical locations of the human skeleton consist of an outer shaft (cortex) surrounding a highly porous internal region (trabecular bone) whose structure is reminiscent of a disordered cubic network. Age related degradation of cortical and trabecular bone takes different forms. Trabecular bone weakens primarily by loss of connectivity of the porous network, and recent studies have shown that vibrational response can be used to obtain reliable estimates for loss of its strength. In contrast, cortical bone degrades via the accumulation of long fractures and changes in the level of mineralization of the bone tissue. In this paper, we model cortical bone by an initially solid specimen with uniform density to which long fractures are introduced; we find that, as in the case of trabecular bone, vibrational assessment provides more reliable estimates of residual strength in cortical bone than is possible using measurements of density or porosity.  相似文献   

17.
A novel semi-empirical scattering model of trabecular bone facilitating its characterization and allowing optimization of the interrogating pulse-echo transducer performance was developed. The model accounts for spatial density distribution of the trabeculae and includes measurement conditions such as pressure–time waveform of the probing ultrasound wave, the emitted field structure, and the transfer function and limited bandwidth of the acoustic source operating in pulse-echo mode. These measurement conditions are of importance as they modify the scattered echoes, which in turn are linked to the micro-architecture of the bone. The bone was modeled by a random distribution of long and thin cylindrical scatterers having randomly varying diameters and mechanical properties, and oriented perpendicularly to the ultrasound beam axis. To mimic clinically encountered conditions the relevant empirical data obtained at 1 MHz were input to the model. The data included pulse-echo source pressure field distribution in the focal zone and the above mentioned transfer function. With these data the model allowed frequency dependent backscattering coefficient of the simulated bone structure and its statistical properties to be determined. The results obtained indicated that the computer simulation is of particular relevance in studying scattering properties of the cancellous bone and holds promise as a tool to determine the relationship between the physical dimensions and shape of the scatterers and for monitoring of osteoporosis. The results of simulations also indicated that the new bone model proposed is well suited to mimic clinically relevant conditions. In contrast to the existing bone models, which usually assume scatterers to be randomly distributed as infinitely long identical cylinders with a cross-section much smaller than the probing ultrasound wave, the new model includes two populations of scatterers having different physical dimensions and also allows the mechanical properties of the scatterers to be varied.  相似文献   

18.
Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid–fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone.  相似文献   

19.
We investigate the remodeling process of trabecular bone inside a human vertebral body using a stochastic lattice model, in which the ability of living bone to adapt to mechanical stimuli is incorporated. Our simulations show the emergence of a networklike structure similar to real trabecular bone. With time, the bone volume fraction reaches a steady state. The microstructure, however, coarsens with a typical length in the system following a power law. The simulation results suggest that a coarsening of the trabecular structure should occur as a natural aging phenomenon, not related to disease.  相似文献   

20.
Correlations between acoustic properties and bone density were investigated in the 12 defatted bovine cancellous bone specimens in vitro. Speed of sound (SOS) and broadband ultrasonic attenuation (BUA) were measured in three different frequency bandwidths from 0.5 to 2 MHz using three matched pairs of transducers with the center frequencies of 1, 2.25, and 3.5 MHz. The relative orientation between ultrasonic beam and bone specimen was the mediolateral (ML) direction of the bovine tibia. SOS shows significant linear positive correlation with apparent density for all three pairs of transducers. However, BUA shows relatively weak correlation with apparent density. SOS and BUA are only weakly correlated with each other. The linear combination of SOS and BUA in a multiple regression model leads to a significant improvement in predicting apparent density. The correlations among SOS, BUA, and bone density can be effectively and clearly represented in the three-dimensional space by the multiple regression model. These results suggest that the frequency range up to 1.5 MHz and the multiple regression model in the three-dimensional space can be useful in the osteoporosis diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号