首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了CS2分子^1B2(^1∑u^+)预离解态线形势垒下的g振动能级光解动力学,包括预解离寿命、产物振转布居、平动-振动-转动能量分配和解离通道分支比.在实验过程中,一束可调谐激光激发超声射流冷却的CS2分子到^1B2(^1∑u^+)电子态,光解产物CS用另一束可调谐激光通过激光诱导荧光(LIF)方法检测.通过拟合光解碎片激发谱的谱峰轮廓,获得了源于不同跃迁初始态的^1B2(^1∑u^+)态g振动能级的预解离寿命.通过分析CS的LIF光谱,则获得了不同光解波长下CS碎片的v=0—8振动态布居、v=1、4—8振动态的转动布居、能量分配以及两个预解离通道CS(X^1∑^+)+S(^3PJ)和CS(X^1∑^+)+S(^1D2)的分支比.实验还考察了初始态弯曲振动量子数v2″、振动角动量量子数l对解离动力学的影响.发现v2″的影响不大,而l的影响却是明显的.较大的l(=K)对应于较短的寿命和较小的通道分支比S(^3PJ)/S(^1D2),即大的l(=K)有利于预解离的发生,同时更有利于产生S(^1D2).  相似文献   

2.
在209.5~216nm,采用光解碎片激发(PHOFEX)谱技术,对CS2分子1B2(1Σ+u)态预解离寿命进行了 考察.测量在超声射流中进行.信号来自解离碎片CS(A1Π,v′=0←X1Σ+,v″=0)Q支带头的激光诱导荧光 (LIF).预解离寿命是通过对谱带进行拟合来提取的.拟合中假定基态转动布居为Boltzmann分布,寿命加宽的转 动谱线为Lorentz线形.通过拟合共获得1B2(1Σ+u)态13个跃迁所对应的预解离寿命,其中6个数据是新得到的. 结果表明,基态振动角动量量子数l或激发态转动角量子数K(K=l)对预解离寿命有明显的影响.对于激发态的 同一振动能级,较大的K对应于较短的预解离寿命.实验中采用可加热的射流喷嘴,用以提高热带激发的强度, 以改善对较大转动角量子数K的影响的考察.  相似文献   

3.
用一束波长为210.27nm的激光将CS2分子激发至预离解态^1B2(^1∑u^+),用另一束激光通过激光诱导荧光(UF)方法检测碎片CS,在250.5~286.5nm获得了CS碎片A^1П←X^1∑^+振转分辨的激发谱,通过对光谱强度的分析,获得了CS碎片v″=0~8的振动布居和v″=1,4~8振动态的转动布居,结果发现,碎片CS的振动布居呈双模结构,分别对应于CS2分子^1B2(^1∑u^+)态的两个解离通道,即CS(X^1∑^+,v″=0~9)+S(^3PJ)和CS(X^1∑^+,v″=0~1)+S(^1B2),由此得到两个解离通道的分支比S(^3P1):S(^1B2)为5.6±1.2。与前人193nm处的研究结果相比,210.27nm激发更有利于S(^3P1)通道的生成。此外,实验还发现CS的转动布居不满足热平衡分布,为两个Boltzmann分布的合成。  相似文献   

4.
研究了CS2 分子1B2 (1Σ+u )预离解态线形势垒下的g振动能级光解动力学,包括预解离寿命、产物振转布居、平动振动转动能量分配和解离通道分支比.在实验过程中,一束可调谐激光激发超声射流冷却的CS2 分子到1B2 (1Σ+u )电子态,光解产物CS用另一束可调谐激光通过激光诱导荧光(LIF)方法检测.通过拟合光解碎片激发谱的谱峰轮廓,获得了源于不同跃迁初始态的1B2 (1Σ+u )态g振动能级的预解离寿命.通过分析CS的LIF光谱,则获得了不同光解波长下CS碎片的v=0~8振动态布居、v=1、4 ~8振动态的转动布居、能量分配以及两个预解离通道CS(X1Σ+ ) +S(3PJ)和CS(X1Σ+ ) +S(1D2 )的分支比.实验还考察了初始态弯曲振动量子数v2″、振动角动量量子数l对解离动力学的影响.发现v2″的影响不大,而l的影响却是明显的.较大的l(=K)对应于较短的寿命和较小的通道分支比S(3PJ) /S(1D2 ),即大的l(=K)有利于预解离的发生,同时更有利于产生S(1D2 ).  相似文献   

5.
用483.2nm的电离激光使CS2分子经由[3+1]REMPI制备出CS2^+(X^∽2Пg,3/2)后,在270~285nm扫描解离激光获得了CS2^+经由B^∽2∑u^+←X^∽2Пg,3/2跃迁的光倒空和光碎片激发谱,由此给出了B^∽2∑u^+电子态的振动频率ν1=613cm^-1和2ν2=707cm^-1。分析表明,正是CS2^+的[1+1]双光子光激发解离过程导致了母体离子CS2^+的光倒空和光解离成碎片离子CS^+和S^+,该过程中光碎片离子的分支比CS^+/S^+大约为3.  相似文献   

6.
在气束条件下,利用483.2nm的激光(3+1)共振增强多光子电离(REMPI)CS2分子以产生CS2+离子源,用另一束可调谐激光在424-482nm内,通过对CS2^+(x^2∏g)(1+1)双光子共振解离产生的碎片离子发谱的探测,来获取CS2^+的光解离动力学信息,光解离碎片S^+的激光发谱(PHOFEX)可归属为CS2^+(A^2∏u,3/2(v′=0-4,v′=v1_(1/2)v2-)←X^2′∏g,3/2(0,0,0))和(A^2∏u,1/2(v=0-4)←X^2∏g,1/2(0,0,0))跃迁,对CS2^+光解离动力学的研究表明,其产生S^+的通道为:(i)CS2吸收一个光子从基态X^2∏g共振激发至A^-2∏u态,(ii)已布居的A^-2∏u态的振动能级和X^2-∏g态的高振动能级产生耦合,(iii)吸收第二个光子从上述耦合的振动能级进一步激发至B^2∑u^+态,再通过B^-2∑u^+态与^4∑^-态间的自旋-轨道相互作用,经由4∑^-排斥态解离产生S^+_CS。  相似文献   

7.
实验研究射流冷却CH3S自由基eA2A1态在352 nm的光解动力学. 应用氢原子产额谱和光碎片平动能谱方法第一次直接观察到氢原子产物解离通道.CH3S自由基eA2A1态2132振动能级解离为H和H2CS产物.H+H2CS产物平动能释放较小,平动能峰值接近33.4 kJ/mol.氢原子产物角分布是各向同性.H+H2CS产物是经eA2A1激发态向X2E基态内转变,紧接着在基态势能面上解离产生.  相似文献   

8.
Li2分子X^1∑g^+,A^1∑u^+和B^1Пu态的势能函数   总被引:1,自引:1,他引:0  
使用SAC/SAC-CI方法,利用D95、D95(d)、6-311g以及6-311g(d)等基组,对Li2分子的基态(X^1∑g^ )、第一激发态(A^1∑u^ )及第二激发态(B^1Пu)的平衡结构和谐振频率进行了优化计算。通过对四个基组的计算结果的比较,得出了D95(d)基组为四个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X^1∑g^ )、SAC-CI的GSUM方法对激发态(A^1∑u^ 和B^1Пu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X^1∑g^ )、第一激发态(A^1∑u^ )和第二激发态(B^1Пu)相对应的光谱常数(Be,ae,ωe和ωeχe),结果与实验数据较为一致。其中,基态、第一激发态与实验数据吻合得非常好。  相似文献   

9.
采用从头计算方法从理论上解释了实验中双原子分子S2(B^3∑u^-→X^3∑g^-吸收谱中谱带(18,0)开始出现的弥散现象.计算了包含自旋-轨道耦合(SOC)的B^3∑u^-和排斥的1^5∏u,2^3∑u^+态的电子势能曲线.对于(18,0)谱带开始弥散,给出了与其他文献不同的物理解释.计算结果表明B^3∑u^-与1^5∏u,2^3∑u^+态的SOC作用导致预解离对谱带的弥散起着决定作用,并与实验结果作了比较,符合很好.  相似文献   

10.
利用SAC/SAC—CI方法,使用D95(d)、6-311G**及CC—PVTZ等基组,对LiH分子的基态(X^1∑^+)、第一激发态(A^1∑^+)及第二简并激发态(B^1П)的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了D95(d)基组为三个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X^1∑^+)、SAC—CI的GSUM方法对激发态(A^1∑^+和B ^1П)进行单点能扫描计算,用正规方程组拟合Murrell—Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X ^1∑^+)相对应的光谱常数,结果与实验数据较为一致.  相似文献   

11.
采用激光光解—激光诱导荧光(LP—LIF)的方法,用266nm激光光解CHBr3分子产生CH自由基,再与N2O继续反应作为NCO自由基的产生源,用438.6nm激光将电子基态X^2∏i(00^10)的NCO激励到激发态A^2∑^+(00^00)上,通过检测激发态NCO时间分辨荧光信号,测得室温(298K)下NCO(A^2∑^+)被烷烃类分子猝灭的实验结果,获得了A^2∑^+(00^00)态猝灭速率常数.实验发现,随着烷烃分子中C—H键数增加,其猝灭截面也近线性增加,但随着分子体积增大,这种增加趋缓.  相似文献   

12.
利用内收缩多参考组态相互作用方法争核价相关一致极化基aug-cc-pCV5Z在0.04-0.54 nm的核间距范围内计算了N2分子X1∑g+态的势能曲线.利用这一势能曲线并在同位素质量识别的基础上,拟合出了同位素分子14N2(X1∑g+),15N2(X1∑g+)和14N15N(X1∑g+)的光谱常数(D0,De,Re,ωe,ωexe,αe和Be)和无转动时的振动能级G(υ)、惯性转动常数Bυ和离心畸变常数Dυ等分子常数.这些结果与已有的实验值十分一致.  相似文献   

13.
自由基OH(X^П,A^2∑^+)的从头算研究   总被引:16,自引:0,他引:16  
用分子轨道从头算方法,研究了OH分子的基态(X^П)和激发态(A^2∑^+)。结果表明,对于基态,在QCISD(T)/6—311++G(3df,3pd)理论水平上,键距是0.09704nm,与实验值0.09706nm完全吻合。对于激发态,使用完全活性空间方法(CASSCF)和大基组6—311++G(3df,3pd),键距是0.10098nm,与实验值0.10121nm基本吻合。从激发态A^2∑^+(v=0)到基态X^П(v=0)的垂直跃迁能量是4.4692eV,与实验值4.3980eV也吻合较好。  相似文献   

14.
王建坤  吴振森 《光谱实验室》2006,23(6):1230-1233
用分子轨道从头算方法,对CH自由基的基态(X^2П)和低激发态(α^4∑^-)的光谱数据进行了计算。计算结果表明,在基态CH(X^2П)时。在QCISD(T)/6-311G++(3df.3pd)水平上.计算所得的键长R=0.1120981nm,偶极矩μ=1.5891 Debye,υ=2845.43cm^-1均与实验值相吻合,在B3PW91/6-311G++(3df,3pd)理论水平上,计算的基态能量为-38.496143Hartree。误差仅为0.22%;对低激发态CH(α^4∑^-),使用含时的密度泛函方法(TDDPT)和大基组6—311++G(3df,3pd)计算所得的R=0.1094nm,垂直跃迁能量为0.926eV,均与实验结果有较好的吻合。  相似文献   

15.
本文利用最近研制的低温离子阱-离子速度成像谱仪在冷离子束中研究了同位素质量分辨的~(79)Br_2~+分子离子的[1+1]双光子激光解离动力学.借助其1~4∑_(u,3/2)~-态为中间态使~(79)Br_2~+共振吸收两个光子至4~5 eV区域的高激发态并发生解离.利用离子速度成像技术获得了光解产物~(79)Br~+的二维速度分布和平动能释放谱.通过平动能释放谱确定了不同解离能量处量子态分辨的解离产物通道分支比.光碎片产物的角分布表明~(79)Br_2~+分子离子的双光子解离是1~4∑_(u,3/2)~-态的△Ω=0平行跃迁至一个Ω=3/2高解离态发生的.由于分子激发态中的强自旋-轨道耦合作用,高激发的四重态很可能参与到实验观测的光解过程.  相似文献   

16.
用266nm激光解离亚硝基苯(C6H5NO)产生光解碎片NO,并利用单光子激光诱导荧光(LIF)技术(X^2Ⅱv″=0→A^2∑^+v′=0)测得初生态光解产物NO的振转光谱。根据计算所得的模拟光谱对光解碎片NO(X,v^″=0)的转动量子数J″进行了归属,得到了量子数最大到J″=50.5的转动能级的相对布居,这表面光解碎片NO具有较高的转动激发。提出了C6H5NO在266nm下可能的光解机理。  相似文献   

17.
用一束波长为 2 10 .2 7nm的激光将CS2 分子激发至预离解态1B2 (1Σ+ u) ,用另一束激光通过激光诱导荧光 (LIF)方法检测碎片CS ,在 2 5 0 .5~ 2 86 .5nm获得了CS碎片A1Π←X1Σ+ 振转分辨的激发谱 .通过对光谱强度的分析 ,获得了CS碎片v″ =0~ 8的振动布居和v″=1,4~ 8振动态的转动布居 .结果发现 ,碎片CS的振动布居呈双模结构 ,分别对应于CS2 分子1B2 (1Σ+ u)态的两个解离通道 ,即CS(X1Σ+ ,v″=0~ 9) +S(3 PJ)和CS(X1Σ+ ,v″ =0~ 1)+S(1B2 ) .由此得到两个解离通道的分支比S(3 PJ) :S(1B2 )为 5 .6± 1.2 .与前人 193nm处的研究结果相比 ,2 10 .2 7nm激发更有利于S(3 PJ)通道的生成 .此外 ,实验还发现CS的转动布居不满足热平衡分布 ,为两个Boltzmann分布的合成  相似文献   

18.
利用一束波长为360.55nm的激光,通过(3 1)共振多光子电离方法制备纯净的且处于X2Π1/2,3/2(000)态的N2O 离子,用另一束激光激发所制备的离子到第一电子激发态A2Σ 的不同振动能级,然后解离,通过检测解离碎片NO 强度随光解光波长的变化,得到了转动分辨的N2O 碎片激发谱.通过对光谱转动结构的拟合,获得了N2O 离子A2Σ 电子态一系列高振动能级的转动常数和自旋分裂常数.  相似文献   

19.
本文利用脉冲紫外激光(UV)选择激发氨分子到A~1A″_2电子激发态的两个最低振动能级υ′_2=0和υ′_2=1(ν_2振动),然后检测新生态H原子的飞行谱(TOF),研究了氨分子的光碎片动力学。光谱证实了最近所测的离解能D_0~0(H-NH_2)=4.645eV;绝大多数生成的NH_2(X~2B_1)基处于非振动激发,但是具有围绕a惯性轴的高度转动激发。通过NH_3(A)的υ′_2=1光离解产生的NH_2(X)基具有较高的内部激发,并且显示了在N=K_a转动能级上的反转布居。  相似文献   

20.
利用光学双共振和激光光谱技术,测量了K_2(~1A_g)态的预解离率和碰撞转移率.脉冲激光将K_2(1~1∑_g~+)基态激发至1~1∑_u~+态,由连续激光激发1~1∑_u~+至激高位~1A_g态.在不同K密度下,记录~1A_g→~1A_u跃迁的时间分辨荧光,光强的对数与衰变时间成线性关系,从直线的斜率得到~1A_g态的有效寿命,由Stern-Volmer方程得到~1A_g态的辐射率与预解离率之和及总的碰撞去布居截面.在不同的K密度下测量时间积分荧光强度I_3[K_2(~1A_g)→K_2(~1A_u)],I_2[K(6S)→K(4P_(3/2))]和I_1[K(4D)→K(4P_(3/2))],光强比I_1/I_3和I_2/I_3与K密度也成线性关系.从直线的斜率和截距并结合从Stern-Volmer方程得到的结果,确定K_3(~1A_g)的预解离率Γ_(P6S)=(1.2±0.4)×10~7s~(-1),Γ_(P4D)=(0.8±0.3)×10~7s~(-1)和碰撞转移截面σss=(1.9±0.6)×10~(-14)cm~2,σ_(4D)=(9.0±3.0)×10~(-15)cm~2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号