首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
Nickel and chromium coatings were produced using plasma spraying and laser remelting on the copper sheet. The corrosion test was carried out in an acidic atmosphere, and the corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. Experimental results show that nickel and chromium coatings display better corrosion resistance properties relative to the original pure copper sample. The corrosion rate of chromium coating is less than that of nickel coating, and corrosion resistances of laser remelted nickel and chromium samples are better than those of plasma sprayed samples. The corrosion deposit film of copper is loose compared with nickel and chromium.  相似文献   

2.
The design and fabrication of graded-refractive-index (GRIN) antireflection (AR) coatings with wide-angle and broadband characteristics are demonstrated. The optimization of the graded-index profiles with a genetic algorithm is used in the design of the GRIN AR coatings. The average reflectance over a wavelength range from 400 nm to 800 nm and angles of incidence from 0° to 80° could be reduced to only 0.1% by applying an optimized AR coating onto BK7 glass. The optimization of step-graded GRIN AR coating is then further investigated in detail. A two-layer AR coating was deposited by electron beam evaporation with glancing angle deposition technology, and the positional homogeneity was improved by depositing the film from two opposite directions. The microstructure of the AR coating was investigated by scanning electron microscopy, and the residual reflectances of the coating sample are in agreement with theoretical calculations. The optimized GRIN AR coatings are beneficial to increasing the efficiency of light utilization.  相似文献   

3.
To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by increasing the electrical resistance,reducing the capacitance and inductance,electrical impedance and corrosion resistance can be increased.Based on the fact that these elements depend on the type of material and the geometry of the material,multilayer structures with different geometries are proposed.For this purpose,conventional multilayer thin films,multilayer thin film including zigzag structure(zigzag 1)and multilayer thin film including double zigzag structure(zigzag 2)of manganese nitride are considered to protect AISI 304 stainless steel against corrosion in salt solution.These multilayer coatings including zigzag structures are prepared by alternately using the conventional deposition of thin film and glancing angle deposition method.After deposition,the samples are placed in a furnace under nitrogen flux for nitriding.The cross sections of the structures are observed by field emission scanning electron microscopy(FESEM).Atomic force microscope(AFM)is used to make surface analyses of the samples.The results show that the multilayer thin films including zigzag structures have smaller grains than conventional multilayer thin films,and the zigzag 2 structure has the smaller grain than the other two samples,which is attributed to the effect of shadowing and porosity on the oblique angle deposition method.Crystallography structures of the samples are studied by using x-ray diffraction(XRD)pattern and the results show that nitride phase formation in zigzag 2 structure is better than that in zigzag 1 structure and conventional multilayer thin film.To investigate the corrosion resistances of the structures,electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests are performed.The results reveal that the multilayer thin films with zigzag structures have better corrosion protection than the conventional multilayer thin films,and the zigzag structure 2 has the smallest corrosion current and the highest corrosion resistance.The electrical impedances of the samples are investigated by simulating equivalent circuits.The high corrosion resistance of zigzag 2 structure as compared with conventional multilayer structure and zigzag 1 structure,is attributed to the high electrical impedance of the structure due to its small capacitance and high electrical resistance.Finally,the surfaces of corroded samples are observed by scanning electron microscope(SEM).  相似文献   

4.
Liquid metals-such as lead (Pb) or lead-bismuth (PbBi) are used as reactor core coolants for accelerator driven systems (ADS) proposed for high-level radioactive waste transmutation. Compatibility of steels with liquid PbBi is a key problem because steels are attacked by dissolution of the components in PbBi, so it has to form a stable coating on steel surface. There are many methods to prepare anti-corrosion coatings on steel, such as hot dipping, pack cementation, plasma spaying, and physical vapor deposition (PVD). Compared with other methods, the PVD method is easy to control the thickness of the coating and the obtained coatings are dense which is crucial to the anti-corrosion ability of the coatings. In this letter, PVD aluminum coatings are developed on the surface of T91 steel and different heat-treatment atmosphere is used to adjust the microstructure, aluminum content, and the phase of the coatings. It is found that the coatings have good adherence ability with steel. The aluminum content and the phase of the coating can be adjusted by the heat-treatment atmosphere. Corrosion tests are performed in oxygen-saturated liquid PbBi at 550 ℃ for 1 000 h, the phase and composition of the coating do not change drastically. All the results indicate that the PVD is a useful method to prepare coatings on the surface of steel used in liquid PbBi.  相似文献   

5.
张栓勤 《中国物理 B》2012,21(6):65101-065101
The sol-gel method is used to fabricate Fe crystalline powders coated with SiO2.By controlling the molar ratio R of diluted water to tetraethoxysilane(TEOS),Fe powders coated with SiO2 with different morphological characteristics are fabricated.The influence of the core diameter on electromagnetic parameters is investigated.The effect of the amount of the coating material SiO2 on electromagnetic parameters is given.Radar wave absorbing properties of Fe coated with SiO2 and TiO2 respectively are compared.  相似文献   

6.
WC-Co reinforced C276 alloy composite coatings are fabricated on Q235 steel by laser melting deposition.The microstructure,hardness,wear performance,and electrochemical corrosion behavior of composite coating are studied.The results show that WC-Co particles are mostly uniformly distributed in the coating and provide favorable conditions for heterogeneous nucleation.The microstructure of C276/WC-Co composite coatings is composed of γ-Ni solid solution dendrites and MoNi solid solution eutectics.The WC-Co particles can effectively improve the hardness and wear resistance of C276 alloy.The average hardness of the composite coating containing 10-wt% WC-Co(447 HV0.2) are 1.26 times higher than that of the C276 alloy(356 HV0.2).The wear rate of composite coating containing 10-wt% WC-Co(6.95 ×10-3 mg/m) is just 3.5% of that of C276 coating(196.23 × 10-3 mg/m).However,comparing with Hastelloy C276,the corrosion resistance of C276/WC-Co composite coating decreases.  相似文献   

7.
In the present investigation, Ni_(50)Ti_(25)Al_(25)(at.%) mechanically alloyed powder is deposited on carbon steel substrate.Before the coating process, the substrate is heated to temperature ranging from room temperature to 400℃. The microstructure, porosity, microhardness, adhesion strength, and corrosion behavior of the coating are investigated at different substrate temperatures. Results show that coating porosity is lower on high temperature surface. Microhardness and adhesion strength of the deposition layer on the substrate without preheating have lower values than with preheating. The polarization test result shows that corrosion performance of the coating is dependent on micro cracks and porosities and the increasing of substrate temperature can improve the quality of coating and corrosion performance.  相似文献   

8.
We report a new structure for broadband antireflection coating by dip-coating technique, which has minimal cost and is compatible with large-scale manufacturing. The coatings are prepared by depositing SiO 2 sol-gel film on a glass substrate, subsequently depositing SiO 2 single-layer particle coating through electrostatic attraction, and depositing a final very thin SiO 2 sol-gel film to improve the mechanical strength of the whole coating structure. The refractive index of the structure changes gradually from the top to the substrate. The transmittance of a glass substrate has been experimentally found to be improved in the spectral range of 400 1 400 nm and in the incidence angle range from 0 to at least 45 . The mechanical strength is immensely improved because of the additional thin SiO 2 sol-gel layer. The surface texture can be applied to the substrates of different materials and shapes as an add-on coating.  相似文献   

9.
The corrosion products formed on carbon and weathering steels exposed in marine, industrial and rural environments in the United States for 16 years have been investigated using M?ssbauer spectroscopy, Raman spectrometry and chemical analysis. M?ssbauer spectroscopy was used to measure the fraction of each oxide in the corrosion coatings and micro-Raman spectrometry was used to locate and map the oxides to 2 μm spatial resolution. M?ssbauer spectroscopy identified the corrosion products in the weathering steels as 75% goethite, 20% lepidocrocite and 5% maghemite. Raman analysis showed that the corrosion products generally formed as alternating layers containing different oxides. For the weathering steels the protective inner-layer closest to the steel substrate consisted of nano-sized goethite ranging in size from 5–30 nm and having a mean particle size of about 12 nm. The outer-layer close to the coating surface, consisted of lepidocrocite and goethite with the former oxide being most abundant. Electron probe micro-analysis measured significant chromium in the goethite close to the steel substrate. Comparison of the goethite in the corrosion products was made with synthetic chromium substituted goethite with nearly identical microstructural characteristics being recorded. It is concluded that chromium inclusions in the goethite are important for formation of a nano-phase oxide layer which may help protect the weathering steel from further corrosion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The MnZn ferrite coating formed on the surface of iron-based soft magnetic powders via facile and modified sol–gel process has been fabricated to obtain better magnetic performance due to its higher permeability compared with traditional nonmagnetic insulation coatings. The influence of the MnZn ferrite contents on the magnetic performance of the soft magnetic composites(SMCs) has been studied. As the MnZn insulation content increases, the core loss first experiences a decreasing trend that is followed by progressive increase, while the permeability follows an increasing trend and subsequently degrades. The optimized magnetic performance is achieved with 2.0 wt% MnZn ferrite, which results from the decrement of inter-particle eddy current losses based on loss separation. A uniform and compact coating layer composed of MnZn ferrite and oxides with an average thickness of 0.38 ± 0.08 μm is obtained by utilizing ion beam technology, and the interface between the powders and the coating shows satisfied adhesiveness compared with the sample directly prepared by mechanical mixing. The evolution of the coating layers during the calcination process has been presented based on careful analysis of the composition and microstructure.  相似文献   

11.
In the present work, graphite grains of different sizes were added into the electrolyte to prepare ceramic coatings on aluminum by plasma electrolytic oxidation (PEO). Scanning electron microscopy (SEM) coupled with an energy dispersive X-ray analysis system (EDX), Raman spectroscopy and X-ray diffractometer (XRD) were used to characterize the coatings. A three-electrode system was used to evaluate the corrosion performances of the coatings in a 3.5 wt.% NaCl solution. It was found that the morphology and corrosion performance of the coatings were significantly influenced by the size of the graphite grains. Compared with bigger graphite grains, finer ones were involved in the oxidation process and embedded within the ceramic coatings, which made the coatings less porous and more compact. Thus, the corrosion resistance of the coatings with embedded graphite grains was greatly improved.  相似文献   

12.
Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar+ ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar+ ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.  相似文献   

13.
Ceramic coatings oxidized for different time periods were prepared to characterize the plasma electrolytic oxidation (PEO) process of AZ91D magnesium alloy. The coatings were analyzed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscope and potentiodynamic polarization measurement. The results show that the PEO coatings perform different growth behaviors at different PEO stages, and different morphologies are exhibited on α- and β-phase of Mg substrate. The corrosion resistance measurement predicates that within the first 30 min oxidation, coating oxidized for 20 min is the best corrosion resistant.  相似文献   

14.
Ceramic coatings on the surfaces of Mg-9Al-1Zn (AZ91) magnesium alloy and Mg-9Al-1Zn-1Nd magnesium alloy (AZ91 magnesium alloy modified by neodymium, named as AZ91Nd in this paper) are synthesized in aluminate electrolyte by plasma electrolytic oxidation (PEO) process, respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses show the PEO coating on the Mg-9Al-1Zn-1Nd alloy comprises not only MgO and Al2O3, which are found in the coating on the AZ91 alloy, but also a trace amount of Nd2O3. Microstructure observations indicate the addition of Nd can decrease the sizes of β phases and form Al2Nd intermetallics in the AZ91 alloy. The fine β phases can effectively restrain the formation of unclosed-holes and greatly decrease the sizes of pores in the coating during the PEO process. In addition, the Al2Nd intermetallics can be completely covered due to the lateral growth of the PEO coatings formed on the α and β phases. As a result, the coating on the AZ91Nd alloy possesses a dense microstructure compared with that on the AZ91 alloy. The following corrosion tests indicate the corrosion resistance of the PEO coating on the AZ91Nd alloy is evidently higher than that of the PEO coating on the AZ91 alloy.  相似文献   

15.
In this study, Ni-P-CNT composite coating was successfully deposited on the surface of copper by electroless plating. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) were used to characterize the coatings. The wear behavior of the coatings was investigated using a pin-on-disk test rig and subsequently friction coefficient data were reported. The corrosion behavior of the Ni-P and Ni-P-CNT coated specimen were evaluated through polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl aqueous solution at the room temperature. The results indicated that the incorporation of carbon nanotubes (CNTs) in the coating improved both tribological behavior and corrosion resistance. These improvements have been attributed to superior mechanical properties, unique topological structure and high chemical stability of nanotubes.  相似文献   

16.
Poly(o-anisidine) (POA) coatings were synthesized on brass by electrochemical polymerization of o-anisidine in aqueous salicylate solution by using cyclic voltammetry. These coatings were characterized by cyclic voltammetry, UV–visible absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion protection aspects of POA coatings on brass in aqueous 3% NaCl solution were investigated by potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The potentiodynamic polarization measurements show that the POA coating has ability to protect the brass against corrosion. The corrosion potential was about 0.204 V versus SCE more positive for the POA coated brass than that of uncoated brass and reduces the corrosion rate of brass almost by a factor of 800. The corrosion behavior of the POA coatings was also investigated by EIS through immersion tests performed in aqueous 3% NaCl solution. The evolution of the impedance parameters with the immersion time was studied and the results show that the POA acts as a protective coating on brass against corrosion in 3% NaCl solution. The water uptake and delamination area were also determined to further support the corrosion protection performance of the POA coating.  相似文献   

17.
A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.  相似文献   

18.
Ni-Co/nano TiO2 (Ni-Co-TiO2) composite coatings were prepared under pulse current and pulse reverse current methods using acetate bath. The microstructure and corrosion resistance of the coatings were characterized by means of XRD, SEM and EIS. Both the Ni-Co alloy and composite coatings exhibited single phase of Ni matrix with face centered cubic (fcc) crystal structure. The crystal orientation of the Ni-Co-TiO2 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with Ni-Co alloy coatings. The results showed that the microstructure and performances of the coatings were greatly affected by TiO2 content on the deposits prepared by PC and PRC methods. The microhardness and corrosion resistance were enhanced in the optimum percentage of TiO2 composite coatings. The PRC composite coatings were exhibited from compact surface, higher microhardness and good corrosion resistance compared with that of the PC composite coating.  相似文献   

19.
In current research, low carbon steel plates were coated by Ni-P electroless method. The effect of adding different concentrations (ranging from 0.01 g/l to 0.5 g/l) of TiC nano-sized particles to the plating bath on deposition rate, surface morphology and corrosion behavior of Ni-P-TiC composite coatings were investigated. The surface morphology and the relevant structure were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Corrosion behavior of the coated steel was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results showed that addition of TiC nano-particles to Ni-P electroless bath not only changes the surface morphology of Ni-P coating, but also improves corrosion resistance of the steel in comparison with TiC free Ni-P electroless coating. In addition, the deposition rate of coating was also affected by incorporation of TiC particles. It was also found that improvement in corrosion resistance largely depends on the phosphorous and TiC concentrations on the coatings.  相似文献   

20.
Ni-B coatings have been deposited on the surfaces of commercial steels (SAE-1026). The depositions were carried out using the electroless plating technique employing a nickel chloride solution with borane-dimethylamine as the reducing agent. These specimens were subsequently heat treated at different temperatures (300-500 °C) and different periods of time. The obtained coating thickness was in the order of approximately 1.5 μm. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the structure and superficial morphology of the coatings. Phases like Ni, Ni3B and Ni4B3 were observed through X-ray diffraction and confirmed by differential scanning calorimeter (DSC) studies. Some of the precipitated phases have been structurally characterized. The corrosion behavior of the coated surfaces was carried out by electrochemical impedance spectroscopy (EIS) using electrolytic sodium chlorine solutions with pH 2 and 7. The EIS results showed an active corrosion mechanism in acid solution while diffusion-reaction phenomena are predominant in neutral solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号