首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H3PO3 on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni2P/Ni3P and the resultant formation of multi-phase coatings (such as Ni2P-P).  相似文献   

2.
The work addresses the influence of cementation and electrodeposition of copper coatings on the corrosion resistance of AISI 304 stainless steel immersed in 30 wt.% H2SO4 at temperatures of 25 and 50 °C. Corrosion process was evaluated by gravimetric tests, DC measurements and electrochemical impedance spectroscopy (EIS). The specimen surfaces were analysed by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. The corrosion performance of AISI 304 stainless steel in sulphuric acid solution was greatly improved by copper coatings. The amount of copper deposited by the cementation process was sufficient to protect the stainless steel of corrosion. A greater amount of copper obtained by electrodeposition treatments does not supply further improvement in the corrosion behaviour. The improved corrosion resistance is related to copper dissolution at the initial stages of immersion tests and the presence of Cu2+ in the solution, which makes the medium more oxidizing, increasing the stability of the passive layer. In addition, the presence of copper at the surface reduces the overpotential of cathodic reaction, enabling the transition from an active region to the passive one.  相似文献   

3.
Ni-Zn-P-TiO2 composite coatings were successfully obtained on low carbon steel by electroless plating technique. Deposits were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis (EDS) studies. The hardness and microstructure of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 composite coatings were analyzed. The change in microstructure and higher hardness was noticed for heat treated composite. The corrosion resistance behavior of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5 wt% NaCl solution. The composite coating exhibited enhanced corrosion resistance property over Ni-Zn-P coating.  相似文献   

4.
Ta-N thin films were deposited on AISI 317L stainless steel (SS) substrates by cathodic arc deposition (CAD) at substrate biases of −50 and −200 V. The as-deposited films were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX). The results show that stoichiometric TaN with hexagonal lattice (3 0 0) preferred orientation was achieved at the bias of −200 V. On the other hand, Ta-rich Ta-N thin film deposited at −50 V shows amorphous nature. According to the XPS result, Ta element in the films surface exist in bonded state, including the Ta-N bonds characterized by the doublet (Ta 4f7/2 = 23.7 eV and Ta 4f5/2 = 25.7 eV). Electrochemical properties of the Ta-N coated stainless steel systems were investigated using potentiodynamic polarization and electrochemical impedance spectroscope (EIS) in Hank's solution at 37 °C. For the Ta-N coated samples, the corrosion current (icorr) is two or three orders of magnitude lower than that of the uncoated ones, indicating a significantly improved corrosion resistance. Growth defects in the Ta-N thin films produced by CAD, however, play a key role in the corrosion process, especially the localised corrosion. Using the polarization fitting and the EIS modelling, we compared the polarization resistance (Rp) and the porosity (P) of the Ta-N coatings deposited at different biases. It seems that Ta-N film with comparatively lower bias (−50 V) shows better corrosion behavior in artifical physiological solution. That may be attributed to the effect of ion bombarding, which can be modulated by the substrate bias.  相似文献   

5.
The aim of this work is to study the electrochemical behavior, under a corrosion-erosion condition, of [TiN/AlTiN]n multilayer coatings with bilayers periods of 1, 6, 12 and 24, deposited by a magnetron sputtering technique on Si (1 0 0) and AISI 1045 steel substrates.The TiN and AlTiN structure for multilayer coatings were evaluated via X-ray diffraction (XRD) analysis. Silica particles were used as an abrasive in the corrosion-erosion test within a 0.5 M H2SO4 solution at an impact angle of 30° over the surface. The electrochemical characterization was carried out using a polarization resistance technique (Tafel), in order to observe changes in the corrosion rate as a function of the bilayers number (n) or bilayer period (Λ). Corrosion rate values of 359 mpy in uncoated steel substrate and 1.016×10−6 mpy for substrate coated with [TiN/AlTiN]24 under impact angle of 30° were found. This behavior was related with the mass loss curve for all coatings and the surface damage was analyzed using SEM images. These results indicate that TiN/AlTiN multilayer coatings deposited on AISI 1045 steel provide a practical solution for applications in erosive-corrosive environments.  相似文献   

6.
In this paper, ceramic coatings were prepared on biomedical NiTi alloys by micro-arc oxidation (MAO) in constant voltage mode. The current density-time response was recorded during the MAO process. The microstructure, element distribution and phase composition of the coatings prepared at different MAO treatment times were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), thin-film X-ray diffraction (TF-XRD) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coatings in 0.9% NaCl solution was evaluated by the potentiodynamic polarization test. It is found that the coatings become more compact with increasing the MAO treatment time, and the growth rate of coating decreases. The results of TF-XRD, EDS and XPS indicate that the coatings are composed of a large amount of γ-Al2O3 and a little α-Al2O3, TiO2 and Ni2O3. The Ni content of the coatings is about 3 at.%, which is greatly lower than that of NiTi substrate. The bonding strength of coating-substrate is higher than 40 MPa for all the samples in this study. The corrosion resistance of the coatings is about two orders of magnitude higher than that of the uncoated NiTi alloy.  相似文献   

7.
Corrosion-resistance behavior of titanium carbon nitride (Ti-C-N) and titanium niobium carbon nitride (Ti-Nb-C-N) coatings deposited onto Si(1 0 0) and AISI 4140 steel substrates via r.f. magnetron sputtering process was analyzed. The coatings in contact with a solution of sodium chloride at 3.5% were studied by Tafel polarization curves and impedance spectroscopy methods (EIS). Variations of the bias voltage were carried out for each series of deposition to observe the influence of this parameter upon the electrochemical properties of the coatings. The introduction of Nb in the ternary Ti-C-N film was evaluated via X-ray diffraction (XRD) analysis. The structure was characterized by using Raman spectroscopy to identify ternary and quaternary compounds. Surface corrosion processes were characterized using optical microscopy and scanning electron microscopy (SEM). XRD results show conformation of the quaternary phase, change in the strain of the film, and lattice parameter as the effect of the Nb inclusion. The main Raman bands were assigned to interstitial phases and “impurities” of the coatings. Changes in Raman intensities were attributed to the incorporation of niobium in the Ti-C-N structure and possibly to resonance enhancement. Finally, the corrosion data obtained for Ti-C-N were compared with the results of corrosion tests of Ti-Nb-C-N coating. The results obtained showed that the incorporation of niobium to Ti-C-N coatings led to an increase in the corrosion-resistance. On another hand, an increase in the bias voltage led to a decrease in the corrosion-resistance for both Ti-C-N and Ti-Nb-C-N coatings.  相似文献   

8.
The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl3-NaCl-KCl-MnCl2 molten salts at 170 °C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.  相似文献   

9.
Ni + Mo + Si composite coatings were prepared by co-deposition of nickel with molybdenum and silicon powders from a nickel solution in which Mo and Si particles were suspended by stirring. The layers have been deposited on a carbon steel substrate (St3S) under galvanostatic conditions. The content of Si in deposited layers was about 2-5 wt.% depending on deposition current density and the value of electric charge. For comparison Ni + Mo composite coatings were obtained under analogous current conditions. Composite coatings of enhanced Si content (15 wt.%) were deposited from an electrolyte in which 40 g/dm3 of Si covered with electroless plated nickel was dispersed. Deposition current density was equal 0.1 A/cm2 and the value of electric charge Q = 500 C/cm2. The thickness of the coatings was about 100-300 μm depending on their kind, electric charge and the deposition current density. Surface and cross-section morphology were investigated by scanning electron microscope (SEM). All deposited coatings are characterized by great, developed surface area. No internal stresses causing their cracking were observed. Chemical composition of the layers was determined by X-ray fluorescence spectroscopy (XRF) method and quantitative X-ray analysis (QXRD). It was stated, that the content of molybdenum and silicon in Ni + Mo + Si coatings depends on deposition current density and the amount of the powder in bath. The results of structural investigation of the obtained layers by the X-ray diffraction (XRD) method show, that they consist in crystalline Mo or Mo and Si phases built into Ni matrix. Moreover, Ni + Mo + Si composite coatings were modified by thermal treatment. It has been found that the thermal treatment of Ni + Mo + Si composite coatings caused that the new phases (NiSi, Mo2Ni3Si and Ni6Mo6C1.06) were obtained.  相似文献   

10.
Ni thin films of 250 nm thicknesses were coated on type 304 and 316 stainless steels and post N+ ion implanted at 15 keV energy with a fluence of 5 × 1017 N+ cm−2 at different substrate temperatures. Surface nano-structure of the samples were analysed using X-ray diffraction (XRD), atomic force microscopy (AFM) before corrosion test and scanning electron microscopy (SEM) after corrosion test. Corrosion behaviour of the samples in 1.0 M H2SO4 solution was investigated by means of potentiodynamic technique. Nano-structure and crystallography of the films showed the development of Ni3N(1 1 1) and Ni4N(2 0 0) orientations with a minimum surface roughness and grain size at 400 K substrate temperature. The highest corrosion resistance with a corrosion current of 0.01 μA cm−2 (for SS(316)) and 0.56 μA cm−2 (for SS(304)) was achieved in case of samples which were N+ ion implanted at 400 K. Results for both types of stainless steels showed good agreement and the better performance of SS(316) was attributed to the 2% molybdenum contents in the alloy composition of this type of stainless steel, which enhances the effectiveness of nitrogen in retarding the corrosion process.  相似文献   

11.
Nanocrystalline Fe50Ni50 alloy samples were prepared by the mechanical alloying process using planetary high-energy ball mill. The alloy formation and different physical properties were investigated as a function of milling time, t, (in the 0–50 h range) by means of the X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Mössbauer spectroscopy and the vibrating sample magnetometer (VSM). The complete formation of γ-FeNi is observed after 24 h milling. When milling time increases from 0 to 50 h, the lattice parameter increases towards the Fe50Ni50 bulk value, the grain size decreases from 67 to 13 nm, while the strain increases from 0.09% to 0.41%. Grain morphologies at different formation stages were observed by SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time.  相似文献   

12.
Titania composite coatings were prepared on carbon steel by plasma electrolytic oxidation in silicate electrolyte and aluminate electrolyte with titania powers doping in the electrolytes. The microstructure of the coatings was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The properties of the coatings including bond strength, thickness, thermal shock resistance and corrosion resistance varying with the quantities of titania powers in the electrolytes were studied. Investigation results revealed that the coating obtained in silicate electrolyte was composed of anatase-TiO2, rutile-TiO2 crystal phases and some Fe, Si, P elements; coating obtained in aluminate electrolyte consisted of anatase-TiO2, Al2TiO5 and some Fe, P elements. Coatings obtained in two types of electrolytes show porous and rough surface. With increasing the concentration of titania powers in the electrolytes, the coating surface first became more compact and less porous and then became more porous and coarse. The bond strength and thickness were not strongly affected by concentration of titania powers in electrolytes. The valves were 23 MPa and for 66 μm for coatings obtained in aluminate electrolyte, and 21 MPa and 35 μm for coatings obtained in silicate electrolyte. Coatings obtained in silicate electrolyte showed a little better thermal shock resistance than those obtained in aluminate electrolyte and the best coatings were obtained with middle concentration of titania powers in the electrolytes. All coated samples showed better corrosion resistance than the substrate in 3.5 wt% NaCl solution. The best coatings were also obtained with middle concentration of titania powers doping in both electrolytes whose corrosion current density was decreased by 2 orders of magnitude compared with the substrate.  相似文献   

13.
The corrosion behavior of the intermetallic compounds homogenized, Ni3(Si,Ti) (L12: single phase) and Ni3(Si,Ti) + 2Mo (L12 and (L12 + Niss) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EPMA: electron probe microanalysis) in 0.5 kmol/m3 H2SO4 and 0.5 kmol/m3 HCl solutions at 303 K. In addition, the corrosion behavior of a solution annealed austenitic stainless steel type 304 was studied under the same experimental conditions as a reference. It was found that the intergranular attack was observed for Ni3(Si,Ti) at an initial stage of the immersion test, but not Ni3(Si,Ti) + 2Mo, while Ni3(Si,Ti) + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss) mixture region. From the immersion test and polarization curves, Ni3(Si,Ti) + 2Mo showed the lowest corrosion resistance in both solutions and Ni3(Si,Ti) had the highest corrosion resistance in the HCl solution, but not in the H2SO4 solution. For instance, it was found that unlike type 304 stainless steel, these intermetallic compounds were difficult to form a stable passive film in the H2SO4 solution. The results obtained were explained in terms of boron segregation at grain boundaries, Mo enrichment and film stability (or strength).  相似文献   

14.
The Zn and Zn-ZrO2 composite coatings were produced by electrodeposition technique using sulphate bath. ZrO2 particles were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The ZrO2 particle size distribution in the plating bath and Zeta potential and the ZrO2 were measured using dynamic light scattering technique (DLS). The corrosion resistance properties of Zn and Zn-ZrO2 composite coatings were compared by examining the experimental data acquired through polarization, open circuit potential (OCP) and Tafel measurements. The corrosion environment was 3.5 wt% NaCl solution. The variation of amount of ZrO2 in the solution on their % wt inclusion in the composite and on composite microhardness was investigated. XRD patterns were recorded for Zn and Zn-ZrO2 coatings to compare their grain size. The SEM images of coatings before and after corrosion under chemical and electrochemical conditions were presented. The results were analyzed to establish the superiority of Zn-ZrO2 composite over Zn coating.  相似文献   

15.
The anodic behavior, corrosion resistance and protective ability of Zn and alloyed Zn-Co (∼3 wt.%) nanocomposite coatings were investigated in a model corrosion medium of 5% NaCl solution. The metallic matrix of the layers incorporates core-shell nano-sized stabilized polymeric micelles (SPMs) obtained from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block co-polymers. The protective properties of the composite coatings were evaluated using potentiodynamic polarization technique, polarization resistance measurements and powder X-ray diffraction. The sizes and distribution of the stabilized polymeric micelles in the starting electrolytes used as well as in the metal matrices of the layers were investigated using scanning and transmission electron microscopy. The results obtained are compared to those of electrodeposited Zn and Zn-Co (∼3 wt.%) alloy coatings at identical conditions and demonstrate the enhanced protective characteristics of the Zn nanocomposites during the investigating period. The influence of the SPMs on the corrosion resistance of the nanocomposite layers is commented and discussed.  相似文献   

16.
Silicon carbide particles reinforced nickel-cobalt-phosphorus matrix composite coatings were prepared by two-step electroless plating process (pre-treatment of sensitizing and subsequent plating) for the application to lightweight microwave absorbers, which were characterized by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM) and vector network analyzer, respectively. The results show that Ni-Co-P deposits are uniform and mixture crystalline of α-Co and Ni3P and exhibit low-specific saturation magnetization and low coercivity. Due to the conductive and ferromagnetic behavior of the Ni-Co thin films, high dielectric constant and magnetic loss can be obtained in the microwave frequencies. The maximum microwave loss of the composite powder less than −32 dB was found at the frequency of 6.30 GHz with a thickness of 2.5 mm when the initial atomic ratio of Ni-Co in the plating bath is 1.5.  相似文献   

17.
In this study, Ni-P-CNT composite coating was successfully deposited on the surface of copper by electroless plating. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) were used to characterize the coatings. The wear behavior of the coatings was investigated using a pin-on-disk test rig and subsequently friction coefficient data were reported. The corrosion behavior of the Ni-P and Ni-P-CNT coated specimen were evaluated through polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl aqueous solution at the room temperature. The results indicated that the incorporation of carbon nanotubes (CNTs) in the coating improved both tribological behavior and corrosion resistance. These improvements have been attributed to superior mechanical properties, unique topological structure and high chemical stability of nanotubes.  相似文献   

18.
Ni-Fe-B-Si-Nb coatings have been deposited on mild steel substrates using high power laser cladding process followed by laser remelting. The influence of Ni-to-Fe concentration ratio in (Ni100−xFex)62B18Si18Nb2 (x = 55, 50, 45 and 40) powders on the phase composition and microstructure is analyzed by X-ray diffraction, scanning- and transmission-electron microscopies. The microhardness and corrosion resistance properties of the coatings are also measured. The results reveal that amorphous matrix layers are obtained for all coatings. The increase of the Ni-to-Fe ratio can promote the formation of γ(Fe-Ni) phase and decrease the formation of Fe2B phase and α-Fe phase. The coating with 1:1 ratio of Ni-to-Fe exhibits the highest microhardness of 1200 HV0.5 and superior corrosion resistance property due to its largest volume fraction of amorphous phase in the coating. Higher or lower than 1:1 ratio of Ni-to-Fe may result in lower amorphous forming ability. However, even that the coating with ratio of 3:2, shows a minimum of microhardness, it shows a better corrosion resistance than other two coatings.  相似文献   

19.
Al2O3 /TiN double and Al2O3/Cr/TiN triple coatings were produced on stainless steel substrates using plasma-detonation techniques. Investigation of the microstructure and characteristics of the coatings after the preparation was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES). The corrosion resistance of the coatings was studied in several electrolytic solutions (0.5 M H2SO4, 1 M HCl, 0.75 M NaCl) using electrochemical techniques (open circuit potential, cyclovoltammetry and potentiodynamic polarization). The obtained results showed, in most of the cases, an improvement of the corrosion resistance, except in NaCl solutions. The effect of the controlled thickness of TiN and Cr layers as well as the additional treatment with a high-current electron beam was also investigated. Nuclear reaction analysis (NRA), Rutherford backscattering spectroscopy (RBS) and scanning electron microscopy (SEM) were applied for the characterization of the samples before and after the corrosion experiments.  相似文献   

20.
J. Yang 《Applied Surface Science》2007,253(12):5302-5305
ZrC/ZrB2 multilayered coatings with bilayer periods ranging from 4.4 to 35.5 nm were synthesized by r.f. magnetron sputtering. X-ray diffraction, scanning electron microscopy and nanoindention were employed to investigate the microstructure and mechanical properties of the nanoscale multilayers. The results indicated that all coatings had the clear multilayered structure with mixed ZrB2(0 0 1), ZrB2(0 0 2) and ZrC(1 1 1) preferred orientations. The maximum hardness (41.7 GPa) was observed in the multilayer with 27.5-nm thick period, which is about 25% higher than the rule-of-mixture value of the monolithic ZrC and ZrB2 coatings. It also exhibited the best adhesion. Its critical load was over 70 mN. While through insert ZrB2 into ZrC layer periodically, higher residual stress built in ZrC layer can be released.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号