首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
本文通过密度泛函方法计算6H-SiC(0001)表面对氧分子和水分子的吸附. 在6H-SiC(0001)表面上吸附的O2分子自发地解离成O*,并被吸收在C与Si原子之间的空位上. 吸附的H2O自发地分解成OH*和H*,它们都被吸附在Si原子的顶部,OH*进一步可逆地转化为O*和H*. H*可以使Si悬键饱和并改变O*的吸附类型,并进一步稳定6H-SiC(0001)表面并防止其转变为SiO2.  相似文献   

2.
Pt单原子在低温CO氧化反应中具有很高的催化活性. 利用扫描隧道显微术与密度泛函理论,研究了Pt单原子在还原性TiO2(110)表面的吸附行为及其与CO和O2分子的相互作用. 研究发现在80 K低温下,TiO2表面的氧空位缺陷是Pt单原子的最优吸附位. 将CO和O2分子分别通入Pt单原子吸附后的TiO2表面,研究相应的吸附构型. 实验表明在低覆盖度下,单个Pt原子会俘获一个CO分子,CO分子同时与表面次近邻的五配位Ti原子(Ti5c)成键,进而形成非对称的Pt-CO 复合物构型. 将样品从80 K升温到100 K后,TiO2表面的CO分子会迁移到Pt-CO处形成Pt-(CO)2的复合结构. 对于O2分子,单个Pt原子同样会吸附一个O2分子,O2分子也会与最近邻或次近邻的Ti5c原子成键形成两种Pt-O2构型. 这些结果在单分子尺度上揭示了CO和O2与Pt单原子的相互作用,呈现了CO与O2反应中的初始状态.  相似文献   

3.
以传统的浸渍法,在不同焙烧温度下制备了用于CO氧化反应的Co3O4/SiO2催化剂.通过激光拉曼光谱(Raman)、X射线光电子能谱(XPS)、X射线衍射(XRD)、程序升温还原(TPR)和X射线吸收精细结构谱(XAFS)表征了该系列催化剂的结构.在所有的催化剂中,XRD和Raman光谱都只检测到了Co3O4晶相的存在.与Co3O4体相相比,XPS结果表明在200 oC焙烧的(Co3O4(200)/SiO2)催化剂中Co3O4表面上存在着过量的Co2+.与XPS的结果一致,TPR结果表明Co3O4(200)/SiO2催化剂中Co3O4表面上存在氧缺陷, 并且XAFS结果也表明Co3O4(200)/SiO2催化剂中Co3O4具有更多的Co2+.提高焙烧温度使得过量的Co2+进一步氧化为Co3+,同时降低了表面氧缺陷浓度,从而得到计量比的Co3O44/SiO2催化剂.在所有的负载催化剂中Co3O4(200)/SiO2催化剂表现出了最好的CO氧化催化性能,表明过量Co2+和表面氧缺陷的存在能够促进Co3O4催化CO氧化反应的活性.  相似文献   

4.
利用聚乙烯亚胺(PEI)修饰的碳酸钙仿生模板合成了具有3D花朵型形貌的SiO2微球.通过调整碳酸钙微粒表面不同浓度PEI的吸附量实现SiO2微球的形貌控制呈现花朵或刀锋的形状. 用XPS和SEM对制备的SiO2微粒进行表征. 结果表明,不用浓度的PEI修饰可以较好地控制3花朵型DSiO2微球的形貌.  相似文献   

5.
利用密度泛函理论中杂化泛函理论方法计算了CH2和CH3自由基吸附在Cun(n=1~6)团簇上时C?H对称伸缩振动模式的软化性质,结果表明,CH2在Cun团簇上的吸附要比CH3的吸附强. 计算得到的C-H键的振动频率与实验上测量的这两个自由基吸附在Cu(111)表面的结果符合得很好,随着团簇尺寸的增加,C-H对称伸缩振动频率的软化(红移)越来越大.  相似文献   

6.
本文利用程序升温脱附技术研究了氧空位浓度对甲基基团和CO在R-TiO2(110)表面吸附的影响. 结果表明,随着氧空位浓度的变化,吸附在桥氧位的甲基基团和吸附在五配位Ti4+位点上的CO分子的脱附温度呈现了不同的趋势,揭示了表面缺陷可能对R-TiO2(110)不同位点上的物质吸附具有重要影响.  相似文献   

7.
本文基于密度泛函理论系统地研究了(TiO2)n团簇上二氧化碳(CO2)的吸附和活化性质. 计算结果表明,CO2更倾向于吸附在(TiO2)n团簇的桥氧原子上,形成“化学吸附”碳酸盐络合物. 而CO更倾向于吸附到末端Ti-O的Ti原子上. 发现计算得到的碳酸盐振动频率值与实验获得的结果非常吻合,这表明配合物中CO2的几何构型与其线性型相比,有微小的弯转. 通过对电子结构、电荷密度、电离势、HOMO-LUMO以及态密度的分析,证实了CO2与团簇之间的电荷转移以及相互作用. 从预测的能量分布图来看,(TiO2)n团簇上的CO2活化与结构密切有关,相比于块体的TiO2,CO2在团簇结构上更易于吸附和活化.  相似文献   

8.
将玻璃基底依次在低成本的SiO2溶胶和TiO2溶胶中浸渍后,在500 oC下煅烧制备了同时具备减反射与自清洁性能的SiO2/TiO2双层膜.该膜的光学性能与结构特征分别通过紫外-可见分光光度计和场发射扫描电镜进行了表征.同时,源于超亲水性和光催化作用的自清洁性能也凸显出来.实验结果表明制备SiO2/TiO2双层膜对光的透射率最高可达到95%,同时具备自清洁性能.  相似文献   

9.
康朝阳  唐军  李利民  闫文盛  徐彭寿  韦世强 《物理学报》2012,61(3):37302-037302
在分子束外延(MBE)设备中,利用直接沉积C原子的方法在覆盖有SiO2的Si衬底(SiO2/Si)上生长石墨烯,并通过Raman光谱和近边X射线吸收精细结构谱等实验技术对不同衬底温度(500℃,600℃,700℃,900℃,1100℃,1200℃)生长的薄膜进行结构表征.实验结果表明,在衬底温度较低时生长的薄膜是无定形碳,在衬底温度高于700℃时薄膜具有石墨烯的特征,而且石墨烯的结晶质量随着衬底温度的升高而改善,但过高的衬底温度会使石墨烯质量降低.衬底温度为1100℃时结晶质量最好.衬底温度较低时C原子活性较低,难以形成有序的C-sp2六方环.而衬底温度过高时(1200℃),衬底表面部分SiO2分解,C原子与表面的Si原子或者O原子结合而阻止石墨烯的形成,并产生表面缺陷导致石墨烯结晶变差.  相似文献   

10.
采用密度泛函理论和slab模型,研究NH3在Ni单原子层覆盖的Pt(111)和WC(001)表面上的物理与化学行为,计算了Ni单原子覆盖表面的电子结构以及NH3的吸附与分解.表面覆盖的单原子层中,Ni原子的性质与Ni(111)面上的Ni原子明显不同.与Ni(111)相比,Ni/Pt(111)和Ni/WC(001)表面上Ni原子dz2轨道上的电子更多地转移到了其它位置,该轨道上电荷密度降低有利于NH3吸附.在Ni/Pt(111)和Ni/WC(001)面上NH3吸附能均大于Ni(111),NH3分子第一个N-H键断裂的活化能则明显比Ni(111)面上低,有利于NH3的分解,吸附能增大使NH3在Ni/Pt(111)和Ni/WC(001)面上更倾向于分解,而不是脱附.N2分子的生成是NH3分解的速控步骤,该反应能垒较高,说明N2分子只有在较高温度下才能生成.WC与Pt性质相似,但Ni/Pt(111)和Ni/WC(001)的电子结构还是有差异的,与Ni(111)表面相比,NH3在Ni/Pt(111)表面上分解速控步骤的能垒降低,而在Ni/WC(001)上却升高.要获得活性好且便宜的催化剂,需要对Ni/WC(001)表面做进一步改进,降低N2分子生成步骤的活化能.  相似文献   

11.
A thin and homogeneous alumina film was prepared by deposition and oxidation of aluminum on a refractory Re(0 0 0 1) substrate under ultrahigh vacuum conditions. X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and high-resolution electron-energy-loss spectroscopy (HREELS) demonstrate that the oxide film is long-range ordered, essentially stoichiometric and free from surface hydroxyl groups. The chemisorption and thermal decomposition of Mo(CO)6 on the Al2O3 film were investigated by means of XPS and UPS. Mo(CO)6 adsorbs molecularly on the oxide film at 100 K; however, thermal decomposition of the adsorbate occurs upon annealing at high temperatures. Consequently the metallic molybdenum clusters are deposited on the thin alumina film via complete decarbonylation of Mo(CO)6.  相似文献   

12.
The oxide which grows in low oxygen pressure and at temperatures between 700 and 1000 K on molybdenum is shown to be MoO2. The epitaxial relationships between the oxide and the metal (100), (110) and (111) surfaces are given. The epitaxial relationships of oxide on the molybdenum (100) and (110) surfaces are geometrically equivalent. The oxide grows on the (111) molybdenum surface with no major oxide plane parallel to the substrate. It is suggested that the epitaxy of MoO2 on the (111) surface is a consequence of growth on {211} molybdenum facets. The atomic positions in the pairs of interfacial planes found are given. There is little agreement between the positions of ions in the oxide and substrate lattice sites. Only in the postulated case of MoO2 on {211} Mo facets is a small misfit found.  相似文献   

13.
The interaction of methanol with clean and oxygen-covered Pt(111) surfaces has been examined with high resolution electron loss spectroscopy (EELS) and thermal desorption spectroscopy (TDS). On the clean Pt(111) surface, methanol dehydrogenated above 140 K to form adsorbed carbon monoxide and hydrogen. On a Pt(111)-p(2 × 2)O surface, methanol formed a methoxy species (CH3O) and adsorbed water. The methoxy species was unstable above 170 K and decomposed to form adsorbed CO and hydrogen. Above room temperature, hydrogen and carbon monoxide desorbed near 360 and 470 K, respectively. The instability of methanol and methoxy groups on the Pt surface is in agreement with the dehydrogenation reaction observed on W, Ru, Pd and Ni surfaces at low pressures. This is in contrast with the higher stability of methoxy groups on silver and copper surfaces, where decomposition to formaldehyde and hydrogen occurs. The hypothesis is proposed that metals with low heats of adsorption of CO and H2 (Ag, Cu) may selectively form formaldehyde via the methoxy intermediate, whereas other metals with high CO and H2 chemisorption heats rapidly dehydrogenate methoxy species below room temperature.  相似文献   

14.
Auger spectroscopy, electron energy loss spectroscopy and ion depth profiling techniques, under ultra high vacuum conditions, have been used in a comparative study of the oxidation of clean and gold precovered silicon (111) surfaces. Exposure of a Si surface covered by a few Au monolayers to an oxygen partial pressure induces the formation of SiO4 tetrahedra even at room temperature. In contrast, oxidation under the same conditions of a clean Si(111) surface leads to the well known formation of a chemisorbed oxygen monolayer. In the case of the Au covered surfaces, the enhancement of the oxide growth is attributed to the presence of an AuSi alloy where the hybridization state of silicon atoms is modified as compared to bulk silicon. This Au catalytic action has been investigated with various parameters as the substrate temperature, oxygen partial pressure and Au coverage. The conclusions are two fold. At low temperature (T < 400°C), gold atoms enhance considerably the oxidation process. SiO4 tetrahedra are readily formed even at room temperature. Nevertheless, the SiO2 thickness saturates at about one monolayer, this effect being attributed to the lack of Si atoms alloyed with gold in the reaction area. By increasing the temperature (from 20°C to ~400°C), silicon diffusion towards the surface is promoted and a thicker SiO2 layer can be grown on top of the substrate. In the case of the oxidation performed at temperature higher than 400°C, the results are similar to the one obtained on a clean surface. At these temperatures, the metallic film agglomerates into tridimensional crystallites on top of a very thin AuSi alloyed layer. The fact that the latter has no influence on the oxidation is attributed to the different local arrangement of atoms at the sample surface.  相似文献   

15.
Oxygen adsorption on the LaB6(100), (110) and (111) clean surfaces has been studied by means of UPS, XPS and LEED. The results on oxygen adsorption will be discussed on the basis of the structurs and the electronic states on the LaB6(100), (110) and (111) clean surfaces. The surface states on LaB6(110) disappear at the oxygen exposure of 0.4 L where a c(2 × 2) LEED pattern disappears and a (1 × 1) LEED pattern appears. The work function on LaB6(110) is increased to ~3.8 eV by an oxygen exposure of ~2 L. The surface states on LaB6(111) disappear at an oxygen exposure of ~2 L where the work function has a maximum value of ~4.4 eV. Oxygen is adsorbed on the surface boron atoms of LaB6(111) until an exposure of ~2 L. Above this exposure, oxygen is adsorbed on another site to lower the work function from ~4.4 to ~3.8 eV until an oxygen exposure of ~100L. The initial sticking coefficient on LaB6(110) has the highest value of ~1 among the (100), (110) and (111) surfaces. The (100) surface is most stable to oxygen among these surfaces. It is suggested that the dangling bonds of boron atoms play an important role in oxygen adsorption on the LaB6 surfaces.  相似文献   

16.
Gian A. Rizzi 《Surface science》2006,600(16):3345-3351
Stoichiometric and highly-defective TiO2(1 1 0) surfaces (called as yellow and blue, respectively) were exposed to Mo(CO)6 vapours in UHV and in a reactive O2 atmosphere. In the case of yellow-TiO2, an O2 reactive atmosphere was necessary to obtain the Mo(CO)6 decomposition at 450 °C with deposition of MoOx nanostructures where, according to core level photoemission data, the Mo+4 state is predominant. In the case of blue-TiO2 it was possible to obtain Mo deposition both in UHV and in an O2 atmosphere. A high dose of Mo(CO)6 in UHV on blue-TiO2 allowed the deposition of a thick metallic Mo layer. An air treatment of this sample at 580 °C led to the elimination of Mo as MoO3 and to the formation of a transformed layer of stoichiometry of Ti(1−x)MoxO2 (where x is close to 0.1) which, according to photoelectron diffraction data, can be described as a substitutional near-surface alloy, where Mo+4 ions are embedded into the titania lattice. This embedding procedure results in a stabilization of the Mo+4 ions, which are capable to survive to air exposure for a rather long period of time. After exposure of the blue-TiO2(1 1 0) substrate to Mo(CO)6 vapours at 450 °C in an O2 atmosphere it was possible to obtain a MoO2 epitaxial ultrathin layer, whose photoelectron diffraction data demonstrate that is pseudomorphic to the substrate.  相似文献   

17.
XPS results on two series of catalysts, namely Mo/SiO2 and CoMo/SiO2 in the oxidic form, are reported. In the first series the molybdenum oxide content deposited on SiO2 ranges from 2.8 to 20.6 weight %. The second series was obtained by cobalt impregnation of the first series; in this case the atomic ratio Co/(Co + Mo) was fixed at 0.36.XPS binding energy and intensities measurements enable estimation of the interaction and dispersion between the oxide phase and the support to be made.In the case of molybdenum deposited alone on the support, the binding energies of the Mo and O levels both increase with MoO3 content. When cobalt is also present on the support, the binding energies of the Mo and O levels remain constant. The relative intensities IMo/ISi and ICo/ISi remain constant up to 12% active phase and then drastically increase for higher amounts of oxide.These results confirm the existence of a relatively strong Mo/SiO2 interaction. This interaction is substantially weaker when Co is supported on the MoSiO2 solid, leading to the formation of CoMoO4 at the expense of the Mo/SiO2 interaction. Furthermore, it is shown that at high content of oxide the active phase is deposited on the outer surface of the particle and not inside the pores.  相似文献   

18.
F. Solymosi  J. Kiss 《Surface science》1981,104(1):181-198
No detectable adsorbed species were observed after exposure of HNCO to a clean Cu(111) surface at 300 K. The presence of adsorbed oxygen, however, exerted a dramatic influence on the adsorptive properties of this surface and caused the dissociative adsorption of HNCO with concomitant release of water. The adsorption of HNCO at 300 K produced two new strong losses at 10.4 and 13.5 eV in electron energy loss spectra, which were not observed during the adsorption of either CO or atomic N. These loses can be attributed to surface NCO on Cu(111). The surface isocyanate was stable up to 400 K. The decomposition in the adsorbed phase began with the evolution of CO2. The desorption of nitrogen started at 700 K. Above 800 K, the formation of C2N2 was observed. The characteristics of the CO2 formation and the ratios of the products sensitively depended on the amount of preadsorbed oxygen. No HNCO was desorbed as such, and neither NCO nor (NCO)2 were detected during the desorption. From the comparison of adsorption and desorption behaviours of HNCO, N, CO and CO2 on copper surfaces it was concluded that NCO exists as such on a Cu(111) surface at 300 K. The interaction of HNCO with oxygen covered Cu(111) surface and the reactions of surface NCO with adsorbed oxygen are discussed in detail.  相似文献   

19.
路战胜  罗改霞  杨宗献 《物理学报》2007,56(9):5382-5388
采用基于广义梯度近似的投影缀加平面波(projector augmented wave) 赝势和具有三维周期性边界条件的超晶胞模型,用第一性原理计算方法,计算并分析了Pd在CeO2(111)面上不同覆盖度时的吸附能,价键结构和局域电子结构. 考虑了单层Pd和1/4单层Pd两种覆盖度吸附的情况. 结果表明:1)在单层吸附时,Pd的最佳吸附位置是O的顶位偏向Ce的桥位;在1/4单层吸附时,Pd最易在O的桥位偏向次层O的顶位吸附.2) 单层覆盖度吸附时,吸附原子Pd之间的作用较强;1/4单 关键词: 三元催化剂 Pd 2')" href="#">CeO2 吸附 密度泛函理论  相似文献   

20.
Oxygen adsorption on the Si(110) surface has been studied by Auger electron spectroscopy. For a clean annealed surface chemisorption occurs, with an initial sticking probability of ~6 × 10?3. In this case the oxygen okll signal saturates and no formation of SiO2 can be detected from an analysis of the Si L2,3VV lineshape. With electron impact on the surface during oxygen exposure much larger quantities are adsorbed with the formation of an SiO2 surface layer. This increased reactivity towards oxygen is due to either a direct effect of the electron beam or to a combined action of the beam with residual CO during oxygen inlet, which creates reactive carbon centers on the surface. Thus in the presence of an electron beam on the surface separate exosures to CO showed adsorption of C and O. For this surface subsequent exposure in the absence of the electron beam resulted in additional oxygen adsorption and formation of SiO2. No adsorption of CO could be detected without electron impact. The changes in surface chemistry with adsorption are detectable from the Si L2,3VV Auger spectrum. Assignments can be made of two main features in the spectra, relating to surface and bulk contributions to the density of states in the valence band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号