首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is an evaluation of the problem of noise pollution in operating rooms. The high sound pressure level of noise in the operating theatre has a negative impact on communication between operating room personnel. The research took place at nine Greek public hospitals with more than 400 beds. The objective evaluation consisted of sound pressure level measurements in terms of L(eq), as well as peak sound pressure levels in recordings during 43 surgeries in order to identify sources of noise. The subjective evaluation consisted of a questionnaire answered by 684 operating room personnel. The views of operating room personnel were studied using Pearson's X(2) Test and Fisher's Exact Test (SPSS Version 10.00), a t-test comparison was made of mean sound pressure levels, and the relationship of measurement duration and sound pressure level was examined using linear regression analysis (SPSS Version 13.00). The sound pressure levels of noise per operation and the sources of noise varied. The maximum measured level of noise during the main procedure of an operation was measured at L(eq)=71.9 dB(A), L(1)=84.7 dB(A), L(10)=76.2 dB(A), and L(99)=56.7 dB(A). The hospital building, machinery, tools, and people in the operating room were the main noise factors. In order to eliminate excess noise in the operating room it may be necessary to adopt a multidisciplinary approach. An improvement in environment (background noise levels), the implementation of effective standards, and the focusing of the surgical team on noise matters are considered necessary changes.  相似文献   

2.
The dB(A) sound level of a noise is accepted as a measure of the damage risk to unprotected ears but often it is not a reliable guide to the risk to ears fitted with hearing protectors. For any dB(A) level inside a protector, normally there will be substantially higher sound levels outside that protector. This paper shows how, from sequential frequency attenuation bands of the protector, and sound level weightings, external sound levels can be calculated, below which the noise inside the protector does not exceed a chosen dB(A) level. Further valuable information may be obtained by mapping external dB(A) and dB(C) levels to cover all possible noise spectra that give the chosen dB(A) level inside the protector. Thus, from a pair of measured sound levels, use of the method indicates whether the protector is sufficient or not, or whether more detailed measurment of the noise is required. This knowledge enhances the scope of the sound level meter and reduces the need for frequency analysis of industrial noise. Its application should be a helpful addition to the data provided by suppliers of hearing protectors.  相似文献   

3.
In order to further define in the literature the characteristics for different noise environments existing in industry over 2000 work stations in eleven different industries were investigated. The data measured included dB(A) sound levels and octave band sound pressure levels. These data are analyzed with respect to mean slope, mean slope as related to dB(A) sound level, flatness, bands of concentrated acoustic energy (or pure tones) and the correlation between the measured dB(A) sound level and that predicted by using the measured octave band sound pressure levels.  相似文献   

4.
Today, analyzing of sound pressure level and frequency is considered as an important index in human society. Sound experts believe that analyzing of these parameters can help us to better understanding of work environments. Sound measurements and frequency analysis did to fix the harmful frequency in all sections in Shiraz gas power plant with sound analyzer model BSWA 308. The sound pressure levels (LP) and the one and one-third octave band were continuously measured in A and C weighting networks and slow mode for time response. Excel 2013 and Minitab 18.1 software used for statistical calculations. Results analyzed by Minitab 18.1 software. The highest harmful frequency in Shiraz Gas Power Plant (SGPP) was 50 Hz with 115 dB. The sound pressure level (SPL) ranged from 45 dB to 120 dB in one-third octave band and weighting network C. The maximum sound pressure level was in Craft electricity generator with 105.3 dB and 67 Hz. Sound pressure level in surrounded environment was 120 dB. According to the results, in this industry the sound pressure level exceeded the Occupational Exposure Level of Iran (OEL). The value of sound pressure level were higher than the Standard of occupational health. SGPP consumes 47000 cubic meters of natural gas per hour to produce 100 MW (Mega Watt) of electricity. It is very high and it is not economical and cost effective. These numbers indicate that the power plant’s efficiency is low. It could be concluded that the noise pollution is an important issue in these industries. Moreover, SGPP produce noise with loss energy. Frequencies rotation at high sound pressure levels toward low frequencies were happened.  相似文献   

5.
The sound reduction index has been measured in the laboratory for partially open sliding window units. The object was to test the feasibility of achieving a moderate degree of sound insulation whilst retaining natural ventilation. Assuming source spectra for aircraft and traffic noise and using the measured SRI's, the sound level difference across a window has been calculated in terms of dB(A). It is concluded that partially open double glazing is about 10 dB(A) better than partially open single glazing, and that double glazing can be opened as much as 100 mm and still be as effective against aircraft noise as closed single glazing.  相似文献   

6.
This paper presents the results obtained in a study on environmental noise pollution in the city of Curitiba, Brazil. The equivalent sound level values—LAeq, 2hr—were measured and tabulated for 1000 locations spread over the urban zones of the city of Curitiba. It has been found out that 93.3% out of the locations display during the day equivalent sound levels over 65 dB(A), and 40.3% out of the total number of locations measured display during the day extremely high values of equivalent sound levels: over 75 dB(A).  相似文献   

7.
Sound pressure level measurements in cars travelling at motorway speeds have shown that, in many cases, the overall level is very high in relation to the dB(A) and octave band levels, suggesting that much of the sound energy is in the low frequency and infrasonic regions. A technique has been developed to extend accurate octave band measurements down to the octave centred on 2 Hz. The system uses a calibrated sound level meter feeding a frequency modulation tape-recorder to record noise below 64 Hz, and an octave band analysis system to analyse the resultant tape recordings. Typical results are presented for a number of vehicles and it is found that sound pressure levels as high as 120 dB can be found in the octave bands between 2 and 16 Hz.  相似文献   

8.
The sound power of a number of test objects was determined from spatially averaged intensity measurements. The results show that the influence of room acoustics is insignificant even for rooms of widely different room constants, if the measuring surfaces are exactly defined and if a good space-averaging technique is used. The intensity integrated over a closed surface defining a source-free space compared to the sound pressure integrated over the same surface gives a measure of the capability of a specific intensity measuring system to suppress external noise. For the test arrangements measured with broad band noise, this suppression was found to be 14–18 dB(A). A similar value of 15 dB was found from sound power measurements on a source with high external sound and an analysis of the results in one-third octave bands. From these measurements an analytical function was derived which describes the average error of the spatially averaged intensity as a function of the difference between the external sound level and the source sound level. For practical measurement situations a further analytical function was derived which gives this intensity error as a function of the difference between the measured (spatially averaged) pressure and intensity levels. Thus it is possible to estimate the error of intensity measurements directly from measured intensity and pressure data.  相似文献   

9.
The noise-excluding properties of a standard supra-aural audiometric earphone, a widely used circumaural-supra-aural combination, and an insert earphone sealed to the ear with a vinyl foam eartip were measured in a diffuse-field room complying with ANSI S12.6-1984. Data on attenuation were obtained monaurally with the nontest ear plugged and muffed. Results for the supra-aural earphones generally agreed well with previously reported measurements. A broadband masking noise was used to directly test the ANSI S3.1-1977 permissible background noise levels for measuring to audiometric zero using standard audiometric earphones. This "ANSI noise" raised the average thresholds of 15 normal-hearing test subjects by 3 to 5 dB at the octave frequencies from 500 to 4000 Hz. With a noise conforming to the less stringent OSHA-1983 regulation, average thresholds were elevated 9 to 17 dB. An "ENT office noise" with an overall sound level of 54 dBA raised average thresholds even further, by as much as 29 dB at 500 Hz. Use of the circumaural system in the office noise limited the threshold elevation to 11, 5, 2, and 0 dB at the four octave frequencies tested. With the fully ("deeply") inserted foam eartips, the threshold elevation in the simulated office noise was 2 dB or less at all test frequencies. Actual threshold elevations agreed closely with predictions based on a critical ratio calculation utilizing measured sound field noise levels and measured earphone attenuation values.  相似文献   

10.
The study reports on the relevancy and accuracy of using mobile phones in participatory noise pollution monitoring studies in an urban context. During one year, 60 participants used the same smartphone model to measure environmental noise at 28 different locations in Paris. All measurements were performed with the same calibrated application. The sound pressure level was recorded from the microphone every second during a 10-min period. The participants frequently measured the evolution of the sound level near two standard monitoring sound stations (in a square and near a boulevard), which enables the assessment of the accuracy and relevancy of collected acoustic measurements. The instantaneous A-weighting sound level, energy indicators such as LA,eq, LA10, LA50 or LA90 and event indicators such as the number of noise events exceeding a certain threshold Lα (NNEL ? Lα) were measured and compared with reference measurements. The results show that instantaneous sound levels measured with mobile phones correlate very well (r > 0.9, p < 0.05) with sound levels measured with a class 1 reference sound level meter with a root mean square error smaller than 3 dB(A). About 10% of the measurements for the boulevard location (respectively 20% for the square) were inaccurate (r < 0.3, p < 0.05). Nevertheless, mobile phone measurements are in agreement for the LA50 and the LA90 acoustic indicators with the fixed station (4-m high) measurements, with a median deviation smaller than 1.5 dB(A) for the boulevard (respectively 3 dB(A) for the square).  相似文献   

11.
People increase their vocal output in noisy environments. This is known as the Lombard effect. The aim of the present study was to measure the effect as a function of the absorption coefficient. The noise source was generated by using other talkers in the room. A-weighted sound levels were measured in a 108 m(3) test room. The number of talkers varied from one to four and the absorption coefficients from 0.12 to 0.64. A model was introduced based on the logarithmic sum of the level found in an anechoic room plus the increasing portion of noise levels up to 80 dB. Results show that the model fits the measurements when a maximum slope of 0.5 dB per 1.0 dB increase in background level is used. Hence Lombard slopes vary from 0.2 dBdB at 50 dB background level to 0.5 dBdB at 80 dB. In addition, both measurements and the model predict a decrease of 5.5 dB per doubling of absorbing area in a room when the number of talkers is constant. Sound pressure levels increase for a doubling of talkers from 3 dB for low densities to 6 dB for dense crowds. Finally, there was correspondence between the model estimation and previous measurements reported in the literature.  相似文献   

12.
In order to better estimate how and to what extent people are affected by exposure to environmental noise, an attempt must be made to calculate first the size of the entire population exposed to certain levels of noise and, second, groups within the population which are particularly sensitive to noise. Such a study has been started in the Federal Republic of Germany. It has been estimated that about 14 million people are exposed to sound levels of roughly 62 dB(A) and about 2 million to levels of roughly 70 dB(A). Nothing is yet known about the existence or size of sensitive groups within these populations, however, and the following report lists areas needing research in terms of this problem.  相似文献   

13.
针对船用PN10DN32三通调节阀噪声声压频谱、声指向性等声学特性规律不明确,噪声声压级是否满足使用要求的问题,基于流-固耦合理论,同时考虑流-固耦合面及流体域内的脉动声学激励源,开展阀门噪声数值模拟研究。分别对三通调节阀在80%及60%开度阀外1 m处的噪声进行数值模拟,分析研究噪声声压频谱特性及声指向性规律。结果表明:80%及60%开度下的噪声声压级分别为49.14 dB(A)、50.79 dB(A),均小于60 d B(A)的噪声限制,满足使用要求。该文为船用三通调节阀噪声数值模拟提供了理论及方法参考。  相似文献   

14.
15.
16.
17.
A field study has been carried out in urban Assiut city, Egypt. The goals of this study are: (1) to carry out measurements to evaluate road traffic noise levels, (2) to determine if these levels exceeds permissible levels, (3) to examine people’s attitudes towards road traffic noise, (4) to ascertain the relationship between road traffic noise levels and degree of annoyance. The measurements indicate that traffic noise noise levels are higher than those set by Egyptian noise standards and policy to protect public health and welfare in residential areas: equivalent continuous A - weighted sound pressure levels (LA eq) = 80 dB and higher were recorded, while maximum permissible level is 65 dB. There is a strong relationship between road traffic noise levels and percentage of highly annoyed respondents. Higher road traffic noise levels mean that the percentage of respondents who feel highly annoyed is also increased.  相似文献   

18.
Groups of human subjects were exposed in a diffuse sound field for 16--24 h to an octave-band noise centered at 4, 2, 1, or 0.5 kHz. Sound-pressure levels were varied on different exposure occasions. At specified times during an exposure, the subject was removed from the noise, auditory sensitivity was measured, and the subject was returned to the noise. Temporary threshold shifts (TTS) increased for about 8 h and then reached a plateau or asymptote. The relation between TTS and exposure duration can be described by a simple exponential function with a time constant of 2.1 h. In the frequency region of greatest loss, threshold shifts at asymptote increased about 1.7 dB for every 1 dB increase in the level of the noise above a critical level. Critical levels were empirically estimated to be 74.0 dB SPL at 4 kHz. 78 dB at 2 kHz, and 82 dB at 1 and 0.5 kHz. Except for the noise centered at 4.0 kHz, threshold shifts were maximal about 1/2 octave above the center frequency of the noise. A smaller second maximum was observed also at 7.0 kHz for the noise centered at 2.0 kHz, at 6.0 kHz for the noise centered at 1.0 kHz, and at 5.5 kHz for the noise centered at 0.5 kHz. After termination of the exposure, recovery to within 5 dB of pre-exposure thresholds was achieved within 24 h or less. Recovery can be described by a simple exponential function with a time constant of 7.1 h. The frequency contour defined by critical levels matches almost exactly the frequency contour defined by the E-weighting network.  相似文献   

19.
A porous elastic road surface (PERS) is superior to drainage asphalt pavement for reducing highway traffic noise. In earlier research and development, for example using a test track, the difference in sound power level (Lw) of cars has been regarded as the noise reduction effect since it was not possible to measure the change in equivalent continuous A-weighted sound pressure level (Leq) for a series of vehicles on such a limited length of surface. As the result of a comparatively major test construction on a highway, have measured the noise reduction effect of PERS as the difference in Leq. First, we measured the motor vehicle Lw and Leq on each section. However, we found that the neighbouring paved sections also influenced Leq. Next, we calculated Leq according to a highway traffic noise model, using the values of Lw measured in the different paved sections. Since the calculated Leq corresponded approximately with the measured Leq, we could verify the validity of the measured Lw. We again calculated Leq, assuming that each pavement is infinitely long. We assumed the improvement of noise reduction effect of PERS was indicated through the calculated Leq. Consequently, we have found that the noise reduction effect of drainage asphalt pavement was 5-6 dB, whereas that of PERS was 7-9 dB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号