首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements made of the acoustical characteristics of, and occupied noise levels in, ten eating establishments are described. Levels to which diners and employees were exposed varied from 45 to 82 dB(A). From these levels and diner questionnaire responses, the number of customers present and average noise levels to which individual diners were exposed during their visits were estimated. These data, assumptions about the number of talkers per customer, and classical room-acoustical theory were used to deduce talker voice output levels. These varied from slightly above "casual" to "loud." An iterative model for predicting speech and noise levels in eating establishments, including the Lombard effect as described by a new, proposed model, was developed. With the measured noise levels as the target for prediction, optimization techniques were used to find best estimates of unknown prediction parameters--such as those defining the Lombard effect, the number of talkers per customer, and the average absorption per customer--with highly credible results. The prediction algorithm and optimal parameters constitute a novel model for predicting speech and noise levels--and thus speech intelligibility--in eating establishments, as a function of the number of customers, including a proven, realistic model of the Lombard effect.  相似文献   

2.
A new simple prediction model has been derived for the average A-weighted noise level due to many people speaking in a room with assumed diffuse sound field. Due to the feed-back influence of noise on the speech level (the Lombard effect), the speech level increases in noisy environments, and the suggested prediction model gives a 6 dB reduction of the noise level by doubling the equivalent absorption area of the room. This is in contrast to the lowering by 3 dB by doubling of the absorption area for a constant power sound source. The prediction model is verified by experimental data found in the literature. In order to achieve acceptable conditions for speech communication within a small group of people, a guide for the recommended minimum absorption area per person in eating establishments is provided.  相似文献   

3.
Teachers adjust their voice levels under different classroom acoustics conditions, even in the absence of background noise. Laboratory experiments have been conducted in order to understand further this relationship and to determine optimum room acoustic conditions for speaking. Under simulated acoustic environments, talkers do modify their voice levels linearly with the measure voice support, and the slope of this relationship is referred to as room effect. The magnitude of the room effect depends highly on the instruction used and on the individuals. Group-wise, the average room effect ranges from -0.93 dB/dB, with free speech, to -0.1 dB/dB with other less demanding communication tasks as reading and talking at short distances. The room effect for some individuals can be as strong as -1.7 dB/dB. A questionnaire investigation showed that the acoustic comfort for talking in classrooms, in the absence of background noise, is correlated to the decay times derived from an impulse response measured from the mouth to the ears of a talker, and that there is a maximum of preference for decay times between 0.4 and 0.5 s. Teachers with self-reported voice problems prefer higher decay times to speak in than their healthy colleagues.  相似文献   

4.
The indirect auditory feedback from one's own voice arises from sound reflections at the room boundaries or from sound reinforcement systems. The relative variations of indirect auditory feedback are quantified through room acoustic parameters such as the room gain and the voice support, rather than the reverberation time. Fourteen subjects matched the loudness level of their own voice (the autophonic level) to that of a constant and external reference sound, under different synthesized room acoustics conditions. The matching voice levels are used to build a set of equal autophonic level curves. These curves give an indication of the amount of variation in voice level induced by the acoustic environment as a consequence of the sidetone compensation or Lombard effect. In the range of typical rooms for speech, the variations in overall voice level that result in a constant autophonic level are on the order of 2 dB, and more than 3 dB in the 4 kHz octave band. By comparison of these curves with previous studies, it is shown that talkers use acoustic cues other than loudness to adjust their voices when speaking in different rooms.  相似文献   

5.
Speech intelligibility was investigated by varying the number of interfering talkers, level, and mean pitch differences between target and interfering speech, and the presence of tactile support. In a first experiment the speech-reception threshold (SRT) for sentences was measured for a male talker against a background of one to eight interfering male talkers or speech noise. Speech was presented diotically and vibro-tactile support was given by presenting the low-pass-filtered signal (0-200 Hz) to the index finger. The benefit in the SRT resulting from tactile support ranged from 0 to 2.4 dB and was largest for one or two interfering talkers. A second experiment focused on masking effects of one interfering talker. The interference was the target talker's own voice with an increased mean pitch by 2, 4, 8, or 12 semitones. Level differences between target and interfering speech ranged from -16 to +4 dB. Results from measurements of correctly perceived words in sentences show an intelligibility increase of up to 27% due to tactile support. Performance gradually improves with increasing pitch difference. Louder target speech generally helps perception, but results for level differences are considerably dependent on pitch differences. Differences in performance between noise and speech maskers and between speech maskers with various mean pitches are explained by the effect of informational masking.  相似文献   

6.
This study is an evaluation of the problem of noise pollution in operating rooms. The high sound pressure level of noise in the operating theatre has a negative impact on communication between operating room personnel. The research took place at nine Greek public hospitals with more than 400 beds. The objective evaluation consisted of sound pressure level measurements in terms of L(eq), as well as peak sound pressure levels in recordings during 43 surgeries in order to identify sources of noise. The subjective evaluation consisted of a questionnaire answered by 684 operating room personnel. The views of operating room personnel were studied using Pearson's X(2) Test and Fisher's Exact Test (SPSS Version 10.00), a t-test comparison was made of mean sound pressure levels, and the relationship of measurement duration and sound pressure level was examined using linear regression analysis (SPSS Version 13.00). The sound pressure levels of noise per operation and the sources of noise varied. The maximum measured level of noise during the main procedure of an operation was measured at L(eq)=71.9 dB(A), L(1)=84.7 dB(A), L(10)=76.2 dB(A), and L(99)=56.7 dB(A). The hospital building, machinery, tools, and people in the operating room were the main noise factors. In order to eliminate excess noise in the operating room it may be necessary to adopt a multidisciplinary approach. An improvement in environment (background noise levels), the implementation of effective standards, and the focusing of the surgical team on noise matters are considered necessary changes.  相似文献   

7.
This paper discusses the prediction of verbal-communication quality in eating establishments (EEs). EEs contain talkers and listeners who require high speech intelligibility at their tables, and high speech privacy between tables. Using catt-Acoustic, verbal-communication quality--quantified by speech transmission index (STI)--in models of three existing EEs was predicted. Talker voice-output levels were predicted using an existing empirical model accounting for the Lombard effect. With these, catt-Acoustic predicted impulse responses, speech levels and noise levels at primary and secondary listener positions, and the corresponding STIs. The untreated EEs were first modeled for various talker and listener positions, and occupancies. Then various treated configurations, involving reduced volume, increased absorption and barriers were studied to determine the effectiveness of the treatments. The results suggest that placing barriers around tables can be an effective way to achieve good verbal-communication quality. Increasing the absorption of the room surfaces or decreasing the ceiling height to control reverberation may not be effective. However, increasing the surface absorption and putting barriers around tables may achieve optimal speech conditions in EEs. Subdividing large EEs into smaller ones can also be effective.  相似文献   

8.
9.
The acceptable range of speech level as a function of background noise level was investigated on the basis of word intelligibility scores and listening difficulty ratings. In the present study, the acceptable range is defined as the range that maximizes word intelligibility scores and simultaneously does not cause a significant increase in listening difficulty ratings from the minimum ratings. Listening tests with young adult and elderly listeners demonstrated the following. (1) The acceptable range of speech level for elderly listeners overlapped that for young listeners. (2) The lower limit of the acceptable speech level for both young and elderly listeners was 65 dB (A-weighted) for noise levels of 40 and 45 dB (A-weighted), a level with a speech-to-noise ratio of +15 dB for noise levels of 50 and 55 dB, and a level with a speech-to-noise ratio of +10 dB for noise levels from 60 to 70 dB. (3) The upper limit of the acceptable speech level for both young and elderly listeners was 80 dB for noise levels from 40 to 55 dB and 85 dB or above for noise levels from 55 to 70 dB.  相似文献   

10.
People working in noisy environments often complain of difficulty communicating when they wear hearing protection. It was hypothesized that part of the workers' communication difficulties stem from changes in speech production that occur when hearing protectors are worn. To address this possibility, overall and one-third-octave-band SPL measurements were obtained for 16 men and 16 women as they produced connected speech while wearing foam, flange, or no earplugs (open ears) in quiet and in pink noise at 60, 70, 80, 90, and 100 dB SPL. The attenuation and the occlusion effect produced by the earplugs were measured. The Speech Intelligibility Index (SII) was also calculated for each condition. The talkers produced lower overall speech levels, speech-to-noise ratios, and SII values, and less high-frequency speech energy, when they wore earplugs compared with the open-ear condition. Small differences in the speech measures between the talkers wearing foam and flange earplugs were observed. Overall, the results of the study indicate that talkers wearing earplugs (and consequently their listeners) are at a disadvantage when communicating in noise.  相似文献   

11.
Two experiments were performed that evaluated the effects of ipsilateral-direct broadband noise maskers on the gerbil brain-stem auditory-evoked response (BAER) to click stimuli. In experiment 1, clicks were presented at 27 Hz at levels including 70, 80, 90, and 100 dB pSPL. Noise conditions included a no-noise control, and included noise levels varying in 10-dB increments from 20 dB SPL to a maximum noise level of 50, 60, 70, and 80 dB SPL for click levels of 70, 80, 90, and 100 dB pSPL, respectively. Gerbil BAER peaks were labeled with small roman numerals to distinguish them from human BAER peaks. The dependent variables included waves i and v latencies and amplitudes. Peak latencies increased and peak amplitudes decreased with decreasing click level and increasing noise level. To a first approximation, peak latencies and amplitudes showed changes with increasing noise level that were similar across click level. With increasing click level, there was little or no effect on the i-v interval. There was an increase in the i-v interval with increasing noise level. In experiment 2, click level was held constant at 90 dB pSPL, and click rates included 15, 40, 65, and 90 Hz. For each click rate, noise conditions included a no-noise control, and noise levels included 20, 30, 40, 50, 60, and 70 dB SPL. With increasing click rate and noise level, there was an increase in peak latencies, an increase in the i-v interval, and a decrease in peak amplitudes. The magnitude of peak latency and amplitude shifts with increasing click rate was dependent on noise level. Specifically, the magnitude of rate-dependent changes decreased with increasing level of broadband noise. These data are compared to human BAER experiments, and are found to be in fundamental agreement.  相似文献   

12.
Recent measurement at a previously studied location illustrates the magnitude of increases in ocean ambient noise in the Northeast Pacific over the past four decades. Continuous measurements west of San Nicolas Island, California, over 138 days, spanning 2003-2004 are compared to measurements made during the 1960s at the same site. Ambient noise levels at 30-50 Hz were 10-12 dB higher (95% CI = 2.6 dB) in 2003-2004 than in 1964-1966, suggesting an average noise increase rate of 2.5-3 dB per decade. Above 50 Hz the noise level differences between recording periods gradually diminished to only 1-3 dB at 100-300 Hz. Above 300 Hz the 1964-1966 ambient noise levels were higher than in 2003-2004, owing to a diel component which was absent in the more recent data. Low frequency (10-50 Hz) ocean ambient noise levels are closely related to shipping vessel traffic. The number of commercial vessels plying the world's oceans approximately doubled between 1965 and 2003 and the gross tonnage quadrupled, with a corresponding increase in horsepower. Increases in commercial shipping are believed to account for the observed low-frequency ambient noise increase.  相似文献   

13.
The noise-excluding properties of a standard supra-aural audiometric earphone, a widely used circumaural-supra-aural combination, and an insert earphone sealed to the ear with a vinyl foam eartip were measured in a diffuse-field room complying with ANSI S12.6-1984. Data on attenuation were obtained monaurally with the nontest ear plugged and muffed. Results for the supra-aural earphones generally agreed well with previously reported measurements. A broadband masking noise was used to directly test the ANSI S3.1-1977 permissible background noise levels for measuring to audiometric zero using standard audiometric earphones. This "ANSI noise" raised the average thresholds of 15 normal-hearing test subjects by 3 to 5 dB at the octave frequencies from 500 to 4000 Hz. With a noise conforming to the less stringent OSHA-1983 regulation, average thresholds were elevated 9 to 17 dB. An "ENT office noise" with an overall sound level of 54 dBA raised average thresholds even further, by as much as 29 dB at 500 Hz. Use of the circumaural system in the office noise limited the threshold elevation to 11, 5, 2, and 0 dB at the four octave frequencies tested. With the fully ("deeply") inserted foam eartips, the threshold elevation in the simulated office noise was 2 dB or less at all test frequencies. Actual threshold elevations agreed closely with predictions based on a critical ratio calculation utilizing measured sound field noise levels and measured earphone attenuation values.  相似文献   

14.
Detailed acoustical measurements were made in 41 working elementary school classrooms near Ottawa, Canada to obtain more representative and more accurate indications of the acoustical quality of conditions for speech communication during actual teaching activities. This paper describes the room acoustics characteristics and noise environment of 27 traditional rectangular classrooms from the 41 measured rooms. The purpose of the work was to better understand how to improve speech communication between teachers and students. The study found, that on average, the students experienced: teacher speech levels of 60.4 dB A, noise levels of 49.1 dB A, and a mean speech-to-noise ratio of 11 dB A during teaching activities. The mean reverberation time in the occupied classrooms was 0.41 s, which was 10% less than in the unoccupied rooms. The reverberation time measurements were used to determine the average absorption added by each student. Detailed analyses of early and late-arriving speech sounds showed these sound levels could be predicted quite accurately and suggest improved approaches to room acoustics design.  相似文献   

15.
The goal of this study was to measure detection thresholds for 12 isolated American English vowels naturally spoken by three male and three female talkers for young normal-hearing listeners in the presence of a long-term speech-shaped (LTSS) noise, which was presented at 70 dB sound pressure level. The vowel duration was equalized to 170 ms and the spectrum of the LTSS noise was identical to the long-term average spectrum of 12-talker babble. Given the same duration, detection thresholds for vowels differed by 19 dB across the 72 vowels. Thresholds for vowel detection showed a roughly U-shaped pattern as a function of the vowel category across talkers with lowest thresholds at /i/ and /ae/ vowels and highest thresholds at /u/ vowel in general. Both vowel category and talker had a significant effect on vowel detectability. Detection thresholds predicted from three excitation pattern metrics by using a simulation model were well matched with thresholds obtained from human listeners, suggesting that listeners could use a constant metric in the excitation pattern of the vowel to detect the signal in noise independent of the vowel category and talker. Application of the simulation model to predict thresholds of vowel detection in noise was also discussed.  相似文献   

16.
17.
Noise control treatments for the propulsion motor noise of rapid transit cars on concrete elevated structures and the noise reduction from barrier walls were investigated by using acoustical scale models and supplemented by field measurements of noise from trains operated by the Port Authority Transportation Corporation (PATCO) in New Jersey. The results show that vehicle skirts and undercar sound absorption can provide substantial cost-effective reductions in propulsion noise at the wayside of transit systems with concrete elevated guideways. The acoustical scale model noise reductions applied to PATCO vehicles on concrete elevated structures show reductions in the A-weighted noise levels of 5 dB for undercar sound absorption, 5 dB for vehicle skirts, and 10 dB for combined undercar absorption and vehicle skirts. Acoustical scale model results for sound barrier walls lined with absorptive treatment showed reductions from 7 dB to 12 dB of noise from vehicles in the far track, depending on the height of the wall, and reductions from 12 dB to 20 dB of noise from vehicles on the near track. Transit vehicles at high speeds where propulsion system noise dominates are 7 dB(A) noisier at 50 ft on concrete elevated structures than on at-grade on tie and ballast. Of this amount, 3 dB is due to loss of ground effect, and 4 dB is due to the absence of undercar absorption provided by ballast.  相似文献   

18.
This paper reports on experimental tests undertaken to assess the capability of noise monitoring applications to be utilized as an alternative low cost solution to traditional noise monitoring using a sound level meter. The methodology consisted of testing 100 smartphones in a reverberation room. Broadband white noise was utilized to test the ability of smartphones to measure noise at background, 50, 70 and 90 dB(A) and these measurements were compared with true noise levels acquired via a calibrated sound level meter. Tests were conducted on phones using the Android and iOS platforms. For each smartphone, tests were completed separately for leading noise monitoring apps culminating in 1472 tests. The results suggest that apps written for the iOS platform are superior to those running on the Android platform. They show that one of the apps tested – SLA Lite – is within ±1 dB of true noise levels across four different reference conditions. The results also show that there is a significant relationship between phone age and its ability to measure noise accurately. The research has implications for the future use of smartphones as low cost monitoring and assessment devices for environmental noise.  相似文献   

19.
A model that allows the prediction of background noise level, for certain combinations of type of area, time of day and nearest major noise source, is proposed. The model has been deduced from multiple regression analysis of 1353 measurements made by Open University students. The standard error of each prediction is 10·2 dB(A). The large standard error of the model indicates the difficulty of estimating background levels solely on the basis of such parameters as are suggested in BS 4142:1967. Within the limitations on the accuracy of the model, which are discussed, it may be concluded that the notional background level as calculated by using the British Standard “Method of Rating Industrial Noise Affecting Mixed Residential and Industrial Areas” will over-estimate the actual background in the great majority of situations.  相似文献   

20.
Groups of human subjects were exposed in a diffuse sound field for 16--24 h to an octave-band noise centered at 4, 2, 1, or 0.5 kHz. Sound-pressure levels were varied on different exposure occasions. At specified times during an exposure, the subject was removed from the noise, auditory sensitivity was measured, and the subject was returned to the noise. Temporary threshold shifts (TTS) increased for about 8 h and then reached a plateau or asymptote. The relation between TTS and exposure duration can be described by a simple exponential function with a time constant of 2.1 h. In the frequency region of greatest loss, threshold shifts at asymptote increased about 1.7 dB for every 1 dB increase in the level of the noise above a critical level. Critical levels were empirically estimated to be 74.0 dB SPL at 4 kHz. 78 dB at 2 kHz, and 82 dB at 1 and 0.5 kHz. Except for the noise centered at 4.0 kHz, threshold shifts were maximal about 1/2 octave above the center frequency of the noise. A smaller second maximum was observed also at 7.0 kHz for the noise centered at 2.0 kHz, at 6.0 kHz for the noise centered at 1.0 kHz, and at 5.5 kHz for the noise centered at 0.5 kHz. After termination of the exposure, recovery to within 5 dB of pre-exposure thresholds was achieved within 24 h or less. Recovery can be described by a simple exponential function with a time constant of 7.1 h. The frequency contour defined by critical levels matches almost exactly the frequency contour defined by the E-weighting network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号