首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《光子学报》2021,50(3)
设计了一台紧凑型高温激光二极管阵列侧面泵浦Nd:YAG脉冲激光器。通过半导体制冷器控制泵浦源工作温度在60℃,其发射中心波长为808 nm,谱线宽度为4 nm。模拟了泵浦源在40℃、50℃和60℃条件下60 s内的温度场分布。实验所用激光增益介质为Nd:YAG晶体,尺寸为φ5 mm×50 mm,掺Nd3+摩尔浓度为1.0at.%。采用磷酸二氘钾晶体作为电光调Q开关,在泵浦源电脉宽250μs,重复频率20 Hz、1 Hz条件下,获得最大能量为230 mJ、246 mJ的单脉冲输出,对应的脉冲宽度分别为8.4 ns、7.8ns。光束发散角约为1.6 mrad。设计的Nd:YAG脉冲激光器总的电-光转换效率大于4.6%。  相似文献   

2.
研制了一种TEC制冷LD侧泵高能量、高光束质量、电光调Q全固态Nd∶YAG激光器。在主振荡器中晶体棒的尺寸为φ7 mm×100 mm,Nd原子数比例为1.1%,LD泵浦的最大峰值功率为15 kW,在重复频率为10 Hz时,获得了350 mJ输出能量,脉冲宽度为9.7 ns,光束质量因子M~2在水平和垂直方向分别为3.3和3.8。使用主振荡功率放大结构,提高了最终的输出功率。第一级放大器Nd∶YAG晶体棒尺寸为φ7.5 mm×134 mm,在输出重复频率10 Hz、泵浦电流80 A、泵浦脉冲宽度200μs时,得到最大单脉冲能量700 mJ,脉冲宽度10 ns。第二级放大器Nd∶YAG晶体棒尺寸为φ8 mm×100 mm,泵浦电流为80 A。最终我们获得了最大的单脉冲能量1 085 mJ,脉冲宽度10 ns,能量不稳定度小于3%,测量的光束质量因子M~2在水平和垂直方向分别为3.9和4.8,实现了焦耳级高光束质量Nd∶YAG激光器的小型化、无水冷化。  相似文献   

3.
采用大功率半导体激光器端面泵浦Nd∶LuVO4晶体,利用Cr4 ∶YAG晶体作为可饱和吸收元件,实现了1.06μm激光的被动调Q运转.在泵浦功率为19.1W时,获得最高平均输出功率为4.58W,脉冲宽度为84ns,单脉冲能量为36.6μJ以及峰值功率为436.2W的激光脉冲.  相似文献   

4.
多波长半导体激光阵列端泵Nd:YAG脉冲激光器   总被引:1,自引:1,他引:0       下载免费PDF全文
研制了无温控多波长激光二极管阵列端面泵浦Nd:YAG电光调Q激光器。采用4 000 W多波长准连续激光二极管阵列作为泵浦源,快轴准直镜与透镜导管作为泵浦耦合系统,端面泵浦φ6 mm×60 mm的Nd:YAG晶体,并采用RTP晶体进行电光调Q实验。在重复频率5 Hz、室温(25℃)时,激光器获得了最大输出能量74.4 mJ、脉宽15 ns的1 064 nm脉冲激光输出,光光转换效率达到11%。在25~55℃的工作温度下,对多波长LDA的光谱特征与激光器的输出特性作了测试,激光器输出能量随着工作温度的上升而先迅速下降再逐步保持稳定,当重复频率分别为5 Hz和10 Hz时,激光器对应的最低输出能量分别为48 mJ与37 mJ。  相似文献   

5.
建立了激光二极管阵列(LDA)侧面泵浦棒状Nd:YAG增益介质时变热效应理论计算模型。采用有限元Ansys软件模拟分析了脉冲LDA侧面泵浦大能量固体激光器的时变热效应特性。研究结果表明,所研究的脉冲LDA侧面泵浦大能量Nd:YAG激光器热效应具有时变特性,介质横截面内中心点处的稳态温度场分布随时间呈锯齿形周期变化,锯齿形变化频率为LDA泵浦频率,脉冲LDA泵浦参数对介质稳态温度场分布有较大影响。分析和计算了介质内热梯度、应力双折射以及激光晶体端面效应等导致的晶体热透镜焦距。计算表明,介质的热焦距主要来源于介质内温度梯度引起的热透镜焦距。  相似文献   

6.
建立了激光二极管阵列(LDA)侧面泵浦棒状Nd:YAG增益介质时变热效应理论计算模型。采用有限元Ansys软件模拟分析了脉冲LDA侧面泵浦大能量固体激光器的时变热效应特性。研究结果表明,所研究的脉冲LDA侧面泵浦大能量Nd:YAG激光器热效应具有时变特性,介质横截面内中心点处的稳态温度场分布随时间呈锯齿形周期变化,锯齿形变化频率为LDA泵浦频率,脉冲LDA泵浦参数对介质稳态温度场分布有较大影响。分析和计算了介质内热梯度、应力双折射以及激光晶体端面效应等导致的晶体热透镜焦距。计算表明,介质的热焦距主要来源于介质内温度梯度引起的热透镜焦距。  相似文献   

7.
采用大功率半导体激光器端面泵浦Nd∶LuVO4晶体,利用Cr4+∶YAG晶体作为可饱和吸收元件,实现了1.06 μm激光的被动调Q运转.在泵浦功率为19.1 W时,获得最高平均输出功率为4.58 W,脉冲宽度为84 ns,单脉冲能量为36.6 μJ以及峰值功率为436.2 W的激光脉冲.  相似文献   

8.
研制了脉冲宽度大、单脉冲能量大的绿光激光器,其中脉冲重复频率与高速相机帧频同步,且光纤耦合输出.激光器采用平凸非稳腔结构,灯泵浦Nd∶YAG晶体,KTP晶体内腔倍频,被动调Q方式,实现了最大重复频率为300Hz、脉冲宽度为70μs、平均功率为38W、单脉冲能量为126.7mJ、光束发散角为3.5mrad的532nm激光输出.将该激光耦合到芯径为800μm的光纤中进行水下实验,耦合效率达到92%.  相似文献   

9.
利用Nd∶YAG/Cr∶YAG/YAG键合晶体,建立了具有高平均输出功率的LD侧面泵浦被动调Q激光器系统.当Cr∶YAG的初始透过率为85%、最大泵浦光功率为187.5 W时,1 064nm激光的平均输出功率为83.68W.通过KTP晶体进行倍频,在最大泵浦光功率下,产生了27.2W532nm绿光激光脉冲,同时脉冲宽度和重复频率分别为210ns和21.2kHz;绿光单脉冲能量和峰值功率分别为1.28mJ和6.1kW;泵浦光(808nm)到倍频光(532nm)的光-光效率为14.5%.  相似文献   

10.
报道了一种1kHz窄脉冲宽度、高峰值功率的电光腔倒空1 064nm全固态激光器.该激光器采用808nm脉冲LD侧面泵浦Nd:YAG晶体棒的双凹型折叠谐振腔结构和同步延迟MgO∶LN晶体横向加压式电光腔倒空技术,通过优化设计谐振腔结构,在脉冲重复频率200Hz时,获得了最大单脉冲能量46.7mJ、脉冲宽度4.06ns、峰值功率11.50MW的1 064nm脉冲激光稳定输出,脉冲宽度和能量的峰峰值不稳定度分别为±1.52%和±2.02%;在1kHz时,最大单脉冲能量达到18.3mJ,脉冲宽度5.02ns,峰值功率3.69MW,脉冲宽度和能量的峰峰值不稳定度分别为±2.75%和±3.52%,激光束因子为3.849和3.868,远场发散角为3.46mrad和3.55mrad,束腰直径为1 508.84μm和1 477.30μm.  相似文献   

11.
用KTP晶体对激光二极管端面泵浦的Nd∶YAG晶体,Cr∶YAG被动调Q产生的1064 nm脉冲激光器进行腔外倍频,用BBO晶体四倍频产生266 nm紫外激光.用15 W的LD阵列,当LD泵浦功率为12 W的情况下,红外(1064μm)调Q平均输出功率为2.2 W,脉冲序列周期为40μs,脉宽为18 ns,峰值功率高达4.9 kW.采用KTP腔外二倍频,532 nm的绿光输出平均功率为850 mW;用BBO腔外四倍频,266 nm的紫外光输出平均功率高达215 mW,绿光-紫外光光转换效率为25.2%,红外到紫外总的转换效率为9.8%.  相似文献   

12.
报道了利用Nd∶YAG四倍频266nm脉冲激光端面泵浦Ce∶LiCAF晶体,采用平凹谐振腔,输出296nm波长紫外激光.当输出镜透过率为20%,入射泵浦能量为13.5mJ时,获得最大输出激光脉冲能量为270μJ,脉冲宽度为3.4ns,输出激光峰值功率为79.4kW,光-光转换效率为2%,斜效率为1.6%.  相似文献   

13.
大功率准连续Nd:YAG陶瓷激光器研究   总被引:4,自引:4,他引:0  
采用侧面环绕均匀排布的紧凑型抽运结构,实现了激光二极管阵列侧向抽运Nd∶YAG陶瓷激光器高效率激光输出。理论计算得到谐振腔输出镜的最佳输出耦合透射率为22.2%,并在输出耦合镜透射率为22%的条件下,用掺杂原子数分数为1%,尺寸为5mm×75mm的Nd∶YAG陶瓷棒,获得了平均功率大于230W的准连续1064nm激光输出,其光光效率和斜率效率分别高达52.4%和61%。并测得输出激光脉冲宽度为160μs,光谱线宽略小于0.8nm,光束发散角为16mrad。实验结果显示,Nd∶YAG陶瓷激光器输出功率Nd∶YAG单晶激光器相当。  相似文献   

14.
为了实现激光二极管端面泵浦Nd:YAG晶体温度场的精确计算,在晶体端面导热边界条件下建立热模型。首先根据热传导方程,以解析分析理论为基础,应用常数变易法和特征函数法,在考虑晶体端面存在热交换情况下,计算得到808 nm激光泵浦Nd:YAG圆棒晶体的温度场分布,分析了泵浦激光功率、光束半径及超高阶次等因素对晶体温度场分布的影响。分析结果表明:当功率为60 W、光斑半径为0. 4 mm的泵浦光作用于半径为1. 5 mm,长度为5 mm的Nd:YAG圆棒晶体时,该晶体内部最高温升出现在泵浦端面中心处,最高温升为426. 3 K,得到晶体的热透镜焦距为272. 98 mm。由于在计算中考虑了空气的导热作用对晶体温度场分布的影响,更符合实际情况,因此结果能更真实反映晶体内部温度场的分布情况。本文研究为精确分析相关激光晶体的温度场分布提供了指导,并为激光器性能的优化提供了理论依据。  相似文献   

15.
设计完成了一种适用于宽温度范围内的无制冷被动调Q固体激光器。根据激光二极管(LD)输出波长随温度漂移的特性,对不同波长叠加组合,实现了20 ℃范围内808 nm泵浦光的稳定输出。优化了泵浦源结构并通过Ansys软件进行稳态热模拟仿真,结果表明其可以实现自然冷却。依据泵浦能量及材料参数,确定了最优的输出镜反射率和饱和吸收体初始透过率分别为28%和34%,被动调Q后的单脉冲输出能量模拟值为9.8 mJ,脉宽为9 ns。通过实验,在35~55 ℃温度范围内,自然冷却条件下获得了单脉冲能量8.6 mJ、脉冲宽度10.2 ns的1064 nm激光输出,单阵列功率不稳定性低于5%,阵列切换时功率不稳定性低于12%。  相似文献   

16.
为获得一体化ns脉冲固体激光器,设计了一种Cr4+∶YAG被动调Q的激光器,将Cr4+∶YAG和Nd∶YAG热键合到一起,并在两端直接镀膜构成F-P激光腔。实验中用光纤耦合的激光二极管端面泵浦激光晶体,实现准连续的激光脉冲输出。针对实验中存在的热透镜效应,设计了一散热片,并对风吹和散热片的实验结果进行了对比。实验证实了设计的可行性,并实现了激光器的稳定运转。  相似文献   

17.
对方形激光晶体的实际工作特点进行分析,根据热容激光器的管理模式,建立泵浦阶段和冷却阶段的晶体热模型,引入变热传导系数对方程进行求解,分别得到LD单端泵浦和冷却时热容激光器温度场的表达式。分析了不同的光斑半径、泵浦时间对晶体温度场的影响。计算结果表明:当泵浦功率为60W、光斑半径为800μm、超高斯阶次为3的脉冲激光二极管对晶体进行泵浦时,在将Nd∶YAG晶体的热导率视为常量和变量的情况下,晶体在泵浦端面获得的最大温升分别为149.93℃、180.18℃。激光晶体的尺寸为(20×20×10)mm3,掺钕离子为1.0%。  相似文献   

18.
高峰值266nm紫外激光器   总被引:1,自引:0,他引:1  
报道了一种激光二极管(LD)端面泵浦的Nd:YAG声光Q开关高峰值功率266nm紫外激光器。该激光器采用紧凑的平平腔结构,LBO和BBO分别作为其二倍频和四倍频晶体。分别利用高偏振比LD阵列(40∶1)、低偏振比LD阵列(5∶1)及低偏振LD阵列腔内放置布氏片结构进行了实验。当注入功率为25W、调制频率为10kHz时,以上结构分别得到功率0.85,0.61和0.72W的266nm紫外光输出。其中,采用高偏振比LD阵列的输出功率最高,单脉冲能量为85μJ,脉宽为5ns,峰值功率高达17kW,泵浦光到紫外光的光-光转换率达3.4%。  相似文献   

19.
介绍了一台连续激光二极管(LD)端面泵浦声光调Q的高重复频率、高效率1.53μm人眼安全光学参量振荡激光器。激光基质材料采用Nd:YVO4晶体,采用按Ⅱ类非临界相位匹配切割、长20 mm的KTA晶体作为非线性光学晶体。在LD泵浦功率13.7 W,声光调Q重复频率60 kHz时,获得最高平均功率2.6 W的1.53μm信号光输出,泵浦光-信号光转换效率达到19%。在最高输出功率2.6 W下测得单脉冲宽度2.9 ns,对应的单脉冲能量和峰值功率分别为43.3μJ和15 kW。  相似文献   

20.
采用高功率激光二极管阵列(LDA)端面泵浦Nd:YAG激光棒方式, 结合凸凹非稳腔的设计,获得20 Hz运转条件下小束散角激光输出平均能量约为83 mJ。以该激光为振荡源,同样采用LDA端面泵浦Nd:YAG激光棒的方式进行能量放大,组成LDA端面泵浦振荡-放大(MOPA)激光器,最终获得重频频率20 Hz、平均能量>200 mJ、发散角<2.1 mrad、能量波动<±2.5%的脉冲激光输出。该激光器光光转换效率约为14.6%,体积为175×91×49 mm3,质量<1 kg,激光经8倍发射天线后发散角<0.3 mrad。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号