首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
有机磷类农药常被用于防治植物病、虫、害,但对人、畜的急性毒性很强,能抑制乙酰胆碱酯酶。三种有机磷类农药分子(乐果、敌百虫和伏杀硫磷)的分子构型用GaussView3.07构造,理论计算采用密度泛函理论(density functional theory, DFT)的B3LYP/6-31G(d, p)基组,并将实验拉曼光谱、理论计算拉曼光谱和表面增强拉曼光谱(SERS)进行比较。结果表明,三种有机磷类农药分子的实验值与理论方法计算值具有很好的匹配性,并对三种有机磷类农药分子(乐果、敌百虫和伏杀硫磷)在400~1 800 cm-1范围内的振动频率进行了全面地归属,找到了这三种有机磷类农药的特征峰。有机磷类农药分子的振动峰中会出现相近的波数,PO基团引起的波数在1 140~1 320 cm-1之间,PS的伸缩振动的谱带在535~750 cm-1范围,含有P—O—C基团的有机磷类农药在920~1 088 cm-1范围产生一个谱带。对比分析三种农药的实验拉曼光谱和表面增强拉曼光谱,找到了这三种有机磷农药分子各自主要的表面增强拉曼特征峰,这些表明利用SERS技术可以用来鉴定有机磷农药。研究结果为有机磷农药的定性定量分析提供了理论基础。  相似文献   

2.
农药残留严重影响人类身体健康与生命安全,故亟需建立一种简单高效的农药残留快速检测方法。本文以金纳米溶胶作为表面增强拉曼光谱(SERS)的增强基底,结合便携式拉曼光谱仪,实现了倍硫磷与对硫磷等常用有机磷农药的多靶标同时检测。结果表明倍硫磷和对硫磷分别在1053 cm~(-1),1216 cm~(-1)和857 cm~(-1),1112 cm~(-1)处具有特征拉曼谱峰,且两者互不干扰。同时进一步研究表明,倍硫磷和对硫磷的浓度与其特征拉曼谱峰强度线性相关,故可实现定量检测,其中倍硫磷检测限可达0.01μg/mL对硫磷检测限可达0.025μg/mL。同时,该SERS方法可直接用于菠菜实际样品中多种农药残留的多靶标快速检测,检测限达到0.05μg/mL。该SERS方法具有方便、快速、灵敏度高、多靶标同时检测等优点,有望实现农药残留的现场快速检测。  相似文献   

3.
应用拉曼光谱技术结合化学计量学方法能有效的实现果蔬中农药残留的定性定量分析。本研究借助实验室自主研发的拉曼光谱检测系统,对苹果中溴氰菊酯和啶虫脒的快速无损识别和检测进行了探索。定性分析时将拉曼峰574 和843 cm-1分别作为识别溴氰菊酯和啶虫脒的拉曼指纹,当苹果中的溴氰菊酯和啶虫脒残留的含量分别为0.78和0.15 mg·kg-1时,两种农药的特征峰仍清晰可见。定量分析首先对光谱进行多种预处理(Savitzky-Golay平滑、一阶导、二阶导、基线校准、标准正态变量变换),结合偏最小二乘法分别建立苹果中溴氰菊酯和啶虫脒含量的定量模型。结果表明,采用8次多项式拟合进行基线校准的预处理方法效果最好,对于溴氰菊酯,偏最小二乘模型预测值与气相色谱法测定值的相关系数和预测均方根误差分别为0.94和0.55 mg·kg-1,对于啶虫脒,其偏最小二乘模型的相关系数与预测均方根误差分别为0.85和0.12 mg·kg-1。本研究证实了利用拉曼技术对苹果农残进行无损检测的可行性,使用该方法进行检测时,在光谱测定前不需要进行前处理,光谱测定后样品无任何损伤,该技术实现了果蔬农残的现场检测,可在检测部门、果蔬加工企业、超市、市场等场所得到推广使用,为果蔬品质安全提供了一种无损、快速和环保的检测方法。  相似文献   

4.
应用表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)技术,结合线性回归算法,开展蜂蜜乐果中农药残留快速定量分析方法研究。含乐果农药残留的益母草蜂蜜样品30个作为被测对象,划分成建模集(20个)和预测集(10个)。采用具有规则倒四角锥体结构的Klarite基底作为增强基底,提高特征拉曼位移峰的相对强度。通过含乐果农药残留蜂蜜样品的SERS光谱与乐果标准品的常规拉曼光谱间的对比分析,找到了蜂蜜中乐果农药残留对应的四个特征拉曼位移峰867,1 065,1 317和1 453 cm-1。采用线性回归方法,建立了蜂蜜中乐果农药残留对应的四个特征拉曼位移峰强与乐果浓度间的线性回归模型。10个未参与建模的预测集样品,评价了模型的预测能力。经比较,采用867 cm-1处特征拉曼位移峰强建立的线性回归模型预测结果最优,模型预测相关系数为0.984,预测均方根误差为0.663 ppm。检测限达到2 ppm,接近我国农药残留最大限量标准的检测限。实验结果表明采用表面增强拉曼光谱技术结合线性回归算法实现蜂蜜中乐果农药残留的快速定量分析是可行的。可为其他农产品的农药残留快速定量分析提供参考依据。  相似文献   

5.
基于SERS法的苹果中农药残留的定性及定量分析   总被引:2,自引:0,他引:2  
使用共焦显微拉曼光谱仪,结合表面增强拉曼散射(Surface-Enhanced Raman Scattering,SERS)技术,采集含有农药马拉硫磷和二嗪农的苹果汁样本的基于银纳米溶胶的表面增强拉曼光谱,采用距离匹配和判别分析的方法对其进行定性分析。然后结合偏最小二乘(Partial Least Squares,PLS)方法对两种农药的表面增强拉曼光谱分别进行数学建模分析。结果表明表面增强拉曼散射(SERS)技术对无损快速定性分析马拉硫磷和二嗪农具有较高的准确性,而定量分析二者的含量也具有较高的可行性。  相似文献   

6.
杀螟硫磷是一种在农作物上广泛使用的有机磷杀虫剂,常用于玉米上害虫的防治。过量或者不合理施用导致的残留积累关系到食品安全和人体健康。常规检测杀螟硫磷的方法有气相色谱-质谱法、高效液相色谱法,其准确性虽好,但存在需要专业人员介入、样品前处理复杂、检测时间长等缺点。表面增强拉曼光谱(SERS)法具有分析速度快、检测灵敏度高和特异性好等优点,被广泛应用于农产品中痕量残留的快速检测。利用表面增强拉曼光谱结合化学计量学方法实现玉米中杀螟硫磷残留的准确检测。以两步种子生长法合成的纳米金棒作为拉曼增强基底,测量600~1 800 cm-1范围内的拉曼光谱。对比杀螟硫磷乙醇溶液和金棒的光谱,确定杀螟硫磷的特征峰在650,830,1 082,1 241,1 344和1 581 cm-1处。采用简单预处理方法快速提取玉米中的杀螟硫磷残留。将受污染的玉米样品粉碎后,利用乙醇溶剂对残留进行两次提取,每次获取的提取液经离心获得上清液,将上清液合并混匀,在水浴中蒸发浓缩,浓缩后的上清液用于采集SERS光谱。每个浓度制备50个平行样本。各浓度残留提取液中的残留参考值采用色质联用方法测定。对比残留提取液的光谱,1 082,1 241和1 581 cm-1处特征峰强度随残留浓度的降低而迅速变弱甚至消失,650,830和1 344 cm-1处的特征峰直至残留浓度为0.48 μg·mL-1时依然可见。当浓度低至0.37 μg·mL-1时,所测光谱与空白提取液光谱相似。采用主成分分析(PCA)提取不同浓度杀螟硫磷残留光谱的主体信息,其中残留为0.37 μg·mL-1和空白提取液光谱的主成分得分重叠,进而判断SERS方法对玉米中杀螟硫磷残留的检测限可达到0.48 μg·mL-1,低于国家规定的农作物中最大残留限,体现出SERS检测的高灵敏性。选取浓度为14.25 μg·mL-1的50个样本分析其650,830和1344 cm-1处的特征峰强度变化可知,所采集的光谱呈现出较好的重复性,相对标准偏差(RSD)值仅为3.12%。对杀螟硫磷残留的定量分析采用支持向量机回归(SVR)实现,Savitzky-Golay卷积平滑和小波变换(WT)用于本次光谱数据的预处理。校正集和预测集样本的划分采用Kennard-Stone算法实现,模型的性能采用校正均方根误差(RMSEC)、校正集决定系数(R2c)、预测均方根误差(RMSEP)和预测集决定系数(R2p)评估。最优模型为SVR结合WT所构建的,具有最小的预测误差,其中校正集的RMSEC=0.103 2 μg·mL-1,R2=0.999 74,预测集的RMSEP=0.134 1 μg·mL-1,R2p=0.999 60。同时,最优模型的预测值与色质联用法所测值基本一致,其预测回收率为95.31%~100.66%。以上表明,SERS结合化学计量学方法检测玉米中杀螟硫磷残留是准确可行的,且有望推广到农作物中多种农药残留的检测,为农产品的安全检测提供一种新思路。  相似文献   

7.
动态表面增强拉曼光谱是在干态与湿态表面增强拉曼光谱(SERS)检测的基础上发展而来的,不仅具有极好的信号增强,还具有良好的重复性与稳定性。提出了一种基于动态SERS与多元分析方法的敌瘟磷快速定量分析方法。实验中,首先测量100,50,10,5,1,0.5和0.1 mg·L-1敌瘟磷动态SERS谱图,并使用多项式校正方法去除光谱基线漂移。然后,处理后的全范围(600~1 800 cm-1)与特征范围(674~713,890~1 195,1 341~1 399和1 549~1 612 cm-1)光谱分别利用支持向量机回归(SVR)构建定量模型,实现对敌瘟磷的定量分析。同时,实验还评估了主成分分析(PCA)对定量分析结果的影响。实验结果表明特征范围光谱所建立的模型预测误差较小,而数据经过PCA处理后预测误差得到进一步下降。最优回归模型是由特征范围光谱经PCA处理后所构建的模型(RMSECV=0.065 7 mg·L-1),模型能够准确地预测敌瘟磷溶液浓度。为了测试实际检测中的效果,该方法被用来对苹果表面的敌瘟磷残留进行检测,并通过气相色谱法进行验证。结果表明该方法对于同一样本多次检测值波动较小,且检测均值与气相色谱检测值相差较小,相对误差最大仅为5.13%。此外,动态SERS检测可在2 min内完成,且后续数据处理也可在数秒内完成,同时整个过程的试剂消耗仅在2 μL左右。因此,所提出的方法在敌瘟磷快速准确检测具有极大优势。  相似文献   

8.
针对水果生产中的农药残留问题,利用表面增强拉曼光谱技术(SERS),把害虫防治使用较多的有机磷农药亚胺硫磷与毒死蜱作为研究对象,探索性研究了将金胶用作增强基底检测以脐橙为载体的混合农药残留快速检测。采集混合农药样品的SERS光谱,通过对比农药的特征峰可以对混合农药进行定性分析。同时利用化学计量学方法,建立混合农药的定量数学模型,并通过对比不同的预处理方法和建模波段对混合农药样品拉曼光谱的处理结果,选择出最优预处理方法与算法的组合。在拉曼光谱范围200~2 300 cm-1内,利用PLS算法处理经一阶微分预处理后的光谱数据,建立的脐橙表皮混合农药残留回归模型效果较好,预测相关系数(Rp)为0.912,预测均方根误差(RMSEP)为3.601 mg·L-1。经过波段筛选后并对光谱处理结果对比,发现光谱在200~620,830~1 040及1 250~2 300 cm-1范围内,利用PLS算法处理经一阶微分预处理后的光谱数据,建立的回归模型效果较好,Rp为0.909,RMSEP为3.338 mg·L-1。研究表明使用SERS技术,可以对脐橙表皮上残留的混合农药进行定性与定量的分析。  相似文献   

9.
有机磷农药的P=O、P=S基团具有极高拉曼活性,故利用拉曼光谱检测有机磷农药残留是一种十分高效且无损的手段。然而,当前常用的表面增强拉曼光谱因缺乏标准化基底和预处理技术,使其难以应用于高精度定量农药残留检测。新型超低频拉曼光谱能够有效探测对浓度更为敏感的低频拉曼峰(0~500 cm^(-1))。因此,本文研究了两种具有代表性的有机磷类农药毒死蜱和敌百虫在不同浓度下的低频拉曼峰频率与强度变化,并对每一低频振动模进行精准指认。此外,我们通过建立两类农药浓度与振动频率和强度的依赖关系,可实现对浓度的指认。超低频拉曼技术在毒死蜱和敌百虫检测中可测得的最低限分别为0.012 mg/kg和0.25 mg/kg,能够基本满足国标要求,为食品农药检测提供了一种初步的、新的实验思路。  相似文献   

10.
《光散射学报》2015,(2):123-127
本研究采集了甲醇中二嗪农溶液在银胶中的表面增强拉曼光谱,解析了其光谱内容,并对甲醇中含不同梯度浓度二嗪农样本溶液进行定量探索。结果表明,农药二嗪农在430cm-1,561cm-1,602cm-1,816cm-1,893cm-1,1125cm-1,1275cm-1,1309cm-1,1372cm-1处有明显的表面增强拉曼特征峰,其中561cm-1,602cm-1,816cm-1三处的特征峰可以用于农药二嗪农的定性分析,检出限为0.006mg/mL。在此基础上,利用偏最小二乘法(PLS)和主成分回归法(PCR)建立了甲醇中二嗪农溶液的定量分析数学模型,对校正集和预测集进行了定量分析。其中,基于偏最小二乘法(PLS)的校正模型分析结果为:相关系数R2为0.99926,RMSEC为0.0120,预测集RMSEP为0.0419;基于主成分回归法(PCR)的数学模型分析结果为:校正集相关系数R2为0.99970,RMSEC为0.0260,预测集RMSEP为0.0388。结果表明,共焦显微光谱仪结合表面增强拉曼散射(SERS)技术检测农药二嗪农含量准确性较高,可用于农药二嗪农的定性及定量检测。  相似文献   

11.
乙酸是变压器油纸绝缘老化所生成酸类物质的主要成分;分析变压器油中溶解乙酸含量对准确评估运行变压器的老化状态具有重要意义。拉曼光谱技术是基于拉曼效应的一种分子分析技术,能很好地用于物质的非接触式原位检测。论文开展了变压器油中溶解乙酸含量拉曼光谱检测方法研究: 利用Gaussian 09W软件分析了乙酸分子的拉曼振动特性,对实测乙酸拉曼谱峰的振动模式进行了指认;基于实验室搭建的激光拉曼光谱液体检测平台,对不同乙酸含量的变压器油样进行了原位检测;选定891 cm-1作为变压器油中溶解乙酸分子的拉曼特征峰,基于乙酸891 cm-1与变压器油932 cm-1特征峰面积比值和最小二乘法建立了乙酸的定量分析方法,检测限可达0.08 mg·mL-1。实验结果表明: 激光拉曼光谱可应用于油中溶解乙酸含量原位检测并具有良好的检测稳定性和重复性,为变压器油中溶解乙酸含量的快速、无损检测提供了一种新方法。  相似文献   

12.
毒死蜱作为一种广谱高效有机磷杀虫剂,在农业等领域被广泛使用。但是,环境毒理学研究发现,毒死蜱可直接施于土壤中,与土壤颗粒牢固结合,几乎不会迁移或挥发,而且水溶性低,容易造成药物残留,影响着农副产品食用的安全性,对生态环境具有潜在的危险性,许多国家对毒死蜱在农产品中的残留量有严格的规定。因此,检测毒死蜱残留的生态风险问题是当务之急。表面增强拉曼光谱(SERS)技术具有快捷、高效、灵敏度高等优势,已经成为光谱检测领域的热点研究技术;密度泛函理论被广泛用于分子结构与性质的理论模拟计算及光谱分析。基于表面增强拉曼光谱和密度泛函理论对杀虫剂毒死蜱的拉曼和表面增强拉曼光谱进行理论研究。首先,利用GaussView5.0对毒死蜱分子及加入银团簇基底的分子结构进行构型。其次,对毒死蜱分子采用6-31G基组,并基于密度泛函理论进行结构优化,利用Gaussian09模拟计算出其拉曼及表面增强拉曼光谱,并确定拉曼光谱和SERS光谱峰值归属。最后,从频移量角度分析银团簇Ag2和Ag3对毒死蜱拉曼光谱的增强效应,并进行频移量大小对比。研究发现,在两种尺寸银团簇作用下,拉曼光谱在326,463,741,781,1 068,1 294,1 435和1 602 cm-1波数处的特征峰强度均有明显的增强,且随着银团簇结构尺寸增大,拉曼信号增强效果更为明显;在不同银团簇增强作用下,一些特征峰发生偏移,其频移量与银团簇结构相关联,在Ag2和Ag3银团簇增强下,表面增强拉曼光谱在463,741~781 cm-1波数处均产生了较大的频移,其余特征峰波数处频移量较小,均在20 cm-1以下,毒死蜱分子分别与Ag2和Ag3入侵后的表面增强拉曼光谱进行对比,频移方向有很好的一致性。该研究结果为表面增强拉曼光谱技术在农药残留检测领域的应用提供了理论依据。  相似文献   

13.
青蒿素是从中药青蒿中提取的含有过氧基团的倍半萜内酯药物,具有良好的抗疟特性,是治疗疟疾的特效药。运用激光拉曼光谱分析了100~3 500 cm-1光谱范围内青蒿素的声子振动特性。指出位于724 cm-1的拉曼峰为与青蒿素中过氧基团直接相关的一个特性声子振动模式,可用于检测过氧桥键的存在。位于1 734 cm-1的拉曼峰为与青蒿素中内酯基团直接相关的一个特性声子振动模式,可用于进一步检测分析青蒿素。由于这两个特征拉曼峰对应于青蒿素分子中特征化学键的振动,而且在实验上较容易观察分析,因而它们可以很好的用于拉曼光谱法快速初步定性检测青蒿素。同时,通过分析比较不同纯度青蒿素样品中724和1 734 cm-1处特征拉曼峰的平均散射信号强度比,拉曼光谱法可以用于定量检测青蒿素样品的纯度。与常用的高效液相色谱法相比,拉曼光谱法更快速方便,检测精度更高,而且可以检测青蒿素样品纯度的均匀性。拉曼光谱法定性和定量检测青蒿素纯度的功能对分析检测中药青蒿的品质也有重要意义。  相似文献   

14.
为实现对有机物混合物的快速、无损检测,提出一种基于激光拉曼光谱技术的二维分析方法。研究结果表明,采用532 nm波长激光作为激发光源,观测到236.2,348.9,449.4,513.6 cm-1四条振动拉曼谱线,且这些谱线的强度比为6.4∶1.7∶9.4∶1.0,可确定四氯乙烯的存在。观测到707.5,1 087.9,1 175.8, 3 078.6 cm-1四条振动拉曼谱线,其强度比为9.6∶6.4∶1.0∶3.9,可确定氯苯的存在。即通过综合分析特征谱线及若干特征谱线的强度比,可快速判断有机混合溶液中某种物质的存在。在定量分析方面,采用多光谱分析结合最小二乘法拟合提高了测量的可靠性,所测样品浓度的准确率为98.4%。本研究为有机物混合物成分识别和浓度探测提供了一套可行的光谱测量方法,有着十分重要的应用前景。  相似文献   

15.
噻菌灵农药的表面增强拉曼光谱分析   总被引:1,自引:0,他引:1  
利用表面增强拉曼光谱技术(SERS)分析噻菌灵农药的拉曼特征峰。采用微波法制备银溶胶表面增强基底,利用激光显微共焦拉曼光谱仪分别采集514.5和785 nm激发波长下的噻菌灵农药拉曼光谱,解析不同激发波长下的拉曼特征峰并进行比较。结果表明:不同激发波长下噻菌灵的拉曼峰强度和拉曼频移差异较大,514.5 nm激发波长下的782和1 012 cm-1最强,是C—H变形振动较强特征峰,而785 nm激发波长下的1 284,1 450和1 592 cm-1最强,是环振动和CN伸缩振动较强特征峰。对比分析各个激发波长下噻菌灵的SERS谱图,找到了噻菌灵农药的5个较强特征拉曼峰:782,1 012,1 284,1 450和1 592 cm-1。这些特征峰可作为食品及农产品中噻菌灵农药残留定性定量判别的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号