首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
物理学   4篇
  2022年   1篇
  2018年   2篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
动态表面增强拉曼光谱是在干态与湿态表面增强拉曼光谱(SERS)检测的基础上发展而来的,不仅具有极好的信号增强,还具有良好的重复性与稳定性。提出了一种基于动态SERS与多元分析方法的敌瘟磷快速定量分析方法。实验中,首先测量100,50,10,5,1,0.5和0.1 mg·L-1敌瘟磷动态SERS谱图,并使用多项式校正方法去除光谱基线漂移。然后,处理后的全范围(600~1 800 cm-1)与特征范围(674~713,890~1 195,1 341~1 399和1 549~1 612 cm-1)光谱分别利用支持向量机回归(SVR)构建定量模型,实现对敌瘟磷的定量分析。同时,实验还评估了主成分分析(PCA)对定量分析结果的影响。实验结果表明特征范围光谱所建立的模型预测误差较小,而数据经过PCA处理后预测误差得到进一步下降。最优回归模型是由特征范围光谱经PCA处理后所构建的模型(RMSECV=0.065 7 mg·L-1),模型能够准确地预测敌瘟磷溶液浓度。为了测试实际检测中的效果,该方法被用来对苹果表面的敌瘟磷残留进行检测,并通过气相色谱法进行验证。结果表明该方法对于同一样本多次检测值波动较小,且检测均值与气相色谱检测值相差较小,相对误差最大仅为5.13%。此外,动态SERS检测可在2 min内完成,且后续数据处理也可在数秒内完成,同时整个过程的试剂消耗仅在2 μL左右。因此,所提出的方法在敌瘟磷快速准确检测具有极大优势。  相似文献   
2.
基于SERS与PCA-SLR实现乙基对氧磷定量检测   总被引:1,自引:0,他引:1  
利用表面增强拉曼光谱(SERS),结合主成分分析(PCA)与分段线性回归(SLR)算法实现乙基对氧磷的定量检测。首先采集820~1 630 cm-1乙基对氧磷溶液SERS,并对820~1 630 cm-1(全范围)与845~875 cm-1(特征范围)光谱分别进行标准正态变换(SNV)、多元散射校正(MSC)、一阶导数绝对值、二阶导数等预处理;然后经PCA降维后利用SLR建立乙基对氧磷溶液浓度预测模型。通过对比不同模型的预测准确度,发现特征范围光谱采用MSC预处理后所建立的模型为最优,总体预测均方误差值(RMSEP)为0.33,满足乙基对氧磷定量检测的需要。  相似文献   
3.
人们日常膳食中常见的食用油含有丰富的饱和脂肪酸,饱和脂肪酸能为人体提供能量和必须营养物质,但过量摄入会导致多种心血管疾病。结合反射率光谱和深度学习方法发展一种食用油中饱和脂肪酸含量的分析方法。首先,测量了菜籽油、大豆油、葵花籽油、玉米油、橄榄油、芝麻油及花生油等7种食用植物油350~2 500 nm范围的反射光谱,并通过气相色谱-质谱分析法获得其软脂酸、花生酸及山嵛酸等饱和脂肪酸的含量。使用中心化、多元散射校正、标准正态变量变换及标准化等算法做光谱预处理消除光谱噪声。然后,构建了一种新型的二维光谱卷积回归网络(S2DCRN)用于脂肪酸分析,而全卷积网络(FCN)、偏最小二乘回归(PLSR)、支持向量回归(SVR)及随机森林(RF)用于与S2DCRN模型相对比。最后,采用序列前向选择(SFS)、随机蛙跳(RFrog)及遗传算法选取光谱特征的重要波长,进而构建更为简单稳健的分析模型。实验结果表明,对食用油的全光谱预处理后,S2DCRN模型性能最优,其模型对预测集的决定系数(R2P)达到0.987 9,均方根误差(RMSEP)为0.510 0。基于重要波长的S2DCRN模型,RFrog-SFS为S2DCRN提供了最佳的预测结果R2P=0.967 9,RMSEP=0.462 7。虽然变量选择后所取得的分析效果略差,但光谱波长数目不足全光谱的1%,节省了光谱数据采集工作并大幅降低了模型复杂度,有助于后续便携式简化检测装置的研发。为进一步探究S2DCRN模型的通用性能,S2DCRN被用于食用油中花生酸和山嵛酸含量分析。其中,S2DCRN对花生酸的预测结果较好R2P=0.950 1,RMSEP=0.152 9。所提出的S2DCRN可实现反射率光谱对食用油中多种脂肪酸的准确快速分析。  相似文献   
4.
杀螟硫磷是一种在农作物上广泛使用的有机磷杀虫剂,常用于玉米上害虫的防治。过量或者不合理施用导致的残留积累关系到食品安全和人体健康。常规检测杀螟硫磷的方法有气相色谱-质谱法、高效液相色谱法,其准确性虽好,但存在需要专业人员介入、样品前处理复杂、检测时间长等缺点。表面增强拉曼光谱(SERS)法具有分析速度快、检测灵敏度高和特异性好等优点,被广泛应用于农产品中痕量残留的快速检测。利用表面增强拉曼光谱结合化学计量学方法实现玉米中杀螟硫磷残留的准确检测。以两步种子生长法合成的纳米金棒作为拉曼增强基底,测量600~1 800 cm-1范围内的拉曼光谱。对比杀螟硫磷乙醇溶液和金棒的光谱,确定杀螟硫磷的特征峰在650,830,1 082,1 241,1 344和1 581 cm-1处。采用简单预处理方法快速提取玉米中的杀螟硫磷残留。将受污染的玉米样品粉碎后,利用乙醇溶剂对残留进行两次提取,每次获取的提取液经离心获得上清液,将上清液合并混匀,在水浴中蒸发浓缩,浓缩后的上清液用于采集SERS光谱。每个浓度制备50个平行样本。各浓度残留提取液中的残留参考值采用色质联用方法测定。对比残留提取液的光谱,1 082,1 241和1 581 cm-1处特征峰强度随残留浓度的降低而迅速变弱甚至消失,650,830和1 344 cm-1处的特征峰直至残留浓度为0.48 μg·mL-1时依然可见。当浓度低至0.37 μg·mL-1时,所测光谱与空白提取液光谱相似。采用主成分分析(PCA)提取不同浓度杀螟硫磷残留光谱的主体信息,其中残留为0.37 μg·mL-1和空白提取液光谱的主成分得分重叠,进而判断SERS方法对玉米中杀螟硫磷残留的检测限可达到0.48 μg·mL-1,低于国家规定的农作物中最大残留限,体现出SERS检测的高灵敏性。选取浓度为14.25 μg·mL-1的50个样本分析其650,830和1344 cm-1处的特征峰强度变化可知,所采集的光谱呈现出较好的重复性,相对标准偏差(RSD)值仅为3.12%。对杀螟硫磷残留的定量分析采用支持向量机回归(SVR)实现,Savitzky-Golay卷积平滑和小波变换(WT)用于本次光谱数据的预处理。校正集和预测集样本的划分采用Kennard-Stone算法实现,模型的性能采用校正均方根误差(RMSEC)、校正集决定系数(R2c)、预测均方根误差(RMSEP)和预测集决定系数(R2p)评估。最优模型为SVR结合WT所构建的,具有最小的预测误差,其中校正集的RMSEC=0.103 2 μg·mL-1,R2=0.999 74,预测集的RMSEP=0.134 1 μg·mL-1,R2p=0.999 60。同时,最优模型的预测值与色质联用法所测值基本一致,其预测回收率为95.31%~100.66%。以上表明,SERS结合化学计量学方法检测玉米中杀螟硫磷残留是准确可行的,且有望推广到农作物中多种农药残留的检测,为农产品的安全检测提供一种新思路。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号