首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
基于实验室自行搭建的拉曼光谱点扫描系统,利用表面增强拉曼技术对橙味饮料中山梨酸钾的含量进行了定量快速检测研究。通过与山梨酸钾标准品拉曼光谱及其水溶液表面增强拉曼光谱等比较分析,确定了山梨酸钾1 648.4,1 389.3和1 161.8 cm-1处的表面增强特征拉曼位移。通过山梨酸钾橙味饮料平行样品的拉曼位移峰强重现性实验并计算其峰强的相对标准偏差证实了该表面增强拉曼方法具有较好的重复性。采集了山梨酸钾浓度范围为1.706~0.180 7 g·kg-1的33个橙味饮料样品的表面增强拉曼光谱,所有原始光谱经S-G 5点平滑及Baseline基线去除荧光背景预处理后分别用一元线性回归分析、多元线性回归分析和偏最小二乘回归分析方法,建立了山梨酸钾的定量预测模型。经比较,选取三个山梨酸钾拉曼特征位移1 161.8,1 389.3和1 648.4 cm-1所建立的多元线性回归模型校正集的相关系数(R2C)和均方根误差(RMSEC)分别为0.983 7和0.051 7 g·kg-1,验证集的相关系数(R2P)和均方根误差(RMSEP)分别为和0.969 9和0.052 8 g·kg-1,比一元线性回归模型和偏最小二乘回归模型误差小、精度高。基于表面增强拉曼完全可以实现橙味饮料中山梨酸钾的定量快速预测,为各类食品中山梨酸钾含量的快速监测奠定了技术基础。  相似文献   

2.
表面增强拉曼光谱对鱼肉中组胺的快速定量分析   总被引:1,自引:0,他引:1  
基于表面增强拉曼光谱(SERS)拟建立一种适用于水产鱼制品中组胺含量的快速检测方法。采用银纳米颗粒(Ag NPs)作为活性基底和氯化钠溶液作为聚集剂获取组胺的SERS特征峰,并结合线性回归算法对鱼肉中的组胺含量进行测定分析。首先对固体组胺、组胺水溶液以及鱼肉提取液中组胺的SERS特征峰及归属进行表征分析,然后对以Ag NPs的浓缩倍数与氯化钠溶液的浓度作为SERS基底的反应条件进行优化,最后在该优化条件下对鱼肉中组胺进行定量分析。结果表明,Ag NPs在400 nm处有最大吸光度,通过透射电子显微镜观察颗粒的形状主要为球形,均匀尺寸为30 nm左右。利用4-巯基苯甲酸作为探针分子对其进行拉曼测试,所得拉曼峰具有良好的重复性,且拉曼强度很高。因此该活性基底的合成方法不仅用时少、易操作,且合成的Ag NPs可作为可靠的增强基底应用于SERS试验中。此外通过紫外-可见分光光度计检测得出氯化钠溶液使Ag NPs在溶液中发生团聚,形成热点,可实现SERS信号增强。固体组胺的拉曼光谱图反映出1 167 cm-1处出现的特征峰主要是由N-H面内弯曲引起的;1 236 cm-1处的特征峰主要是咪唑中C-H平面内弯曲和环呼吸引起的;1 291 cm-1处主要与环伸展有关;1 474 cm-1处的特征峰主要是由咪唑N-H面内弯曲振动和环伸展引起的。优化反应条件在Ag NPs的浓缩倍数为15倍、氯化钠溶液浓度为1 mol·L-1时表现出最高的增强效应,并在该优化条件下检测了浓度为5~250 mg·L-1的组胺水溶液,得出在该优化条件下检测到组胺水溶液的最低浓度为5 mg·L-1。同时在该优化条件下采集了10~100 mg·L-1范围的鱼肉提取液中组胺的SERS光谱,并建立组胺溶液的特征拉曼位移峰强度与浓度之间的线性回归模型。得出在1 180,1 258和1 425 cm-1处的特征峰与对应的拉曼峰强度值所建立的标准曲线有良好的线性关系(R2=0.918 1~0.947 3),通过比较得出在1 258 cm-1处特征拉曼位移峰强度的R2值最大,且在鱼肉中组胺的最低检测浓度为10 mg·L-1, 远低于国标中水产品中组胺最大限量检测限50 mg·L-1。因此选择1 258 cm-1处的标准曲线进行进一步的组胺检测。最后通过对鱼肉提取液中添加组胺对该标准曲线进行检测验证,得到回收率在100%~111%之间。且通过高效液相色谱法验证该方法具有适用性。由此表明选取银纳米颗粒作为活性基底、氯化钠溶液作为聚集剂的表面增强拉曼光谱技术结合线性回归法建立标准曲线用于快速检测鱼肉中的组胺是可行且准确,这为在鱼肉中的组胺含量的快速定量分析提供了参考依据。  相似文献   

3.
农药残留严重影响人类身体健康与生命安全,故亟需建立一种简单高效的农药残留快速检测方法。本文以金纳米溶胶作为表面增强拉曼光谱(SERS)的增强基底,结合便携式拉曼光谱仪,实现了倍硫磷与对硫磷等常用有机磷农药的多靶标同时检测。结果表明倍硫磷和对硫磷分别在1053 cm~(-1),1216 cm~(-1)和857 cm~(-1),1112 cm~(-1)处具有特征拉曼谱峰,且两者互不干扰。同时进一步研究表明,倍硫磷和对硫磷的浓度与其特征拉曼谱峰强度线性相关,故可实现定量检测,其中倍硫磷检测限可达0.01μg/mL对硫磷检测限可达0.025μg/mL。同时,该SERS方法可直接用于菠菜实际样品中多种农药残留的多靶标快速检测,检测限达到0.05μg/mL。该SERS方法具有方便、快速、灵敏度高、多靶标同时检测等优点,有望实现农药残留的现场快速检测。  相似文献   

4.
针对水果生产中的农药残留问题,利用表面增强拉曼光谱技术(SERS),把害虫防治使用较多的有机磷农药亚胺硫磷与毒死蜱作为研究对象,探索性研究了将金胶用作增强基底检测以脐橙为载体的混合农药残留快速检测。采集混合农药样品的SERS光谱,通过对比农药的特征峰可以对混合农药进行定性分析。同时利用化学计量学方法,建立混合农药的定量数学模型,并通过对比不同的预处理方法和建模波段对混合农药样品拉曼光谱的处理结果,选择出最优预处理方法与算法的组合。在拉曼光谱范围200~2 300 cm-1内,利用PLS算法处理经一阶微分预处理后的光谱数据,建立的脐橙表皮混合农药残留回归模型效果较好,预测相关系数(Rp)为0.912,预测均方根误差(RMSEP)为3.601 mg·L-1。经过波段筛选后并对光谱处理结果对比,发现光谱在200~620,830~1 040及1 250~2 300 cm-1范围内,利用PLS算法处理经一阶微分预处理后的光谱数据,建立的回归模型效果较好,Rp为0.909,RMSEP为3.338 mg·L-1。研究表明使用SERS技术,可以对脐橙表皮上残留的混合农药进行定性与定量的分析。  相似文献   

5.
动态表面增强拉曼光谱是在干态与湿态表面增强拉曼光谱(SERS)检测的基础上发展而来的,不仅具有极好的信号增强,还具有良好的重复性与稳定性。提出了一种基于动态SERS与多元分析方法的敌瘟磷快速定量分析方法。实验中,首先测量100,50,10,5,1,0.5和0.1 mg·L-1敌瘟磷动态SERS谱图,并使用多项式校正方法去除光谱基线漂移。然后,处理后的全范围(600~1 800 cm-1)与特征范围(674~713,890~1 195,1 341~1 399和1 549~1 612 cm-1)光谱分别利用支持向量机回归(SVR)构建定量模型,实现对敌瘟磷的定量分析。同时,实验还评估了主成分分析(PCA)对定量分析结果的影响。实验结果表明特征范围光谱所建立的模型预测误差较小,而数据经过PCA处理后预测误差得到进一步下降。最优回归模型是由特征范围光谱经PCA处理后所构建的模型(RMSECV=0.065 7 mg·L-1),模型能够准确地预测敌瘟磷溶液浓度。为了测试实际检测中的效果,该方法被用来对苹果表面的敌瘟磷残留进行检测,并通过气相色谱法进行验证。结果表明该方法对于同一样本多次检测值波动较小,且检测均值与气相色谱检测值相差较小,相对误差最大仅为5.13%。此外,动态SERS检测可在2 min内完成,且后续数据处理也可在数秒内完成,同时整个过程的试剂消耗仅在2 μL左右。因此,所提出的方法在敌瘟磷快速准确检测具有极大优势。  相似文献   

6.
应用表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)技术,结合线性回归算法,开展蜂蜜乐果中农药残留快速定量分析方法研究。含乐果农药残留的益母草蜂蜜样品30个作为被测对象,划分成建模集(20个)和预测集(10个)。采用具有规则倒四角锥体结构的Klarite基底作为增强基底,提高特征拉曼位移峰的相对强度。通过含乐果农药残留蜂蜜样品的SERS光谱与乐果标准品的常规拉曼光谱间的对比分析,找到了蜂蜜中乐果农药残留对应的四个特征拉曼位移峰867,1 065,1 317和1 453 cm-1。采用线性回归方法,建立了蜂蜜中乐果农药残留对应的四个特征拉曼位移峰强与乐果浓度间的线性回归模型。10个未参与建模的预测集样品,评价了模型的预测能力。经比较,采用867 cm-1处特征拉曼位移峰强建立的线性回归模型预测结果最优,模型预测相关系数为0.984,预测均方根误差为0.663 ppm。检测限达到2 ppm,接近我国农药残留最大限量标准的检测限。实验结果表明采用表面增强拉曼光谱技术结合线性回归算法实现蜂蜜中乐果农药残留的快速定量分析是可行的。可为其他农产品的农药残留快速定量分析提供参考依据。  相似文献   

7.
在石墨烯-Ag纳米颗粒复合结构表面增强拉曼散射(SERS)基底常规制备工艺的基础上,提出了采用偶联剂吸附的方法来改善Ag纳米颗粒在目标基底上分布的均匀性;采用双层聚甲基丙烯酸甲酯(PMMA)来转移石墨烯,以减少石墨烯表面的缺陷;采用退火处理的方法来降低SERS基底的拉曼背景噪声,从而提高拉曼光谱的对比度。实验结果表明,采用优化制备工艺得到的复合结构SERS基底均匀性有较大提高,石墨烯G峰和2D峰的增强拉曼光谱对比度分别提高了54.9%和64.3%,罗丹明6G(R6G)分子在774和1 363 cm-1处的拉曼光谱强度随浓度变化关系的拟合优度(R2)分别达到了0.997 5和0.986 7。  相似文献   

8.
采用金胶颗粒作为活性基底,氯化钠溶液作为活性剂,并采用表面增强拉曼光谱(SERS)技术建立一种检测鸭肉中萘夫西林残留的检测方法。首先分析了奈夫西林水溶液的SERS特征峰及其归属。然后分析了奈夫西林在鸭肉提取液中的SERS特征峰,确定了鉴定鸭肉中奈夫西林残留的拉曼特征峰,并选取521与1 449 cm-1处的拉曼峰强度进行条件的优化。最后应用内标法对鸭肉提取液中萘夫西林的残留量进行定量分析。结果表明,鸭肉提取液中萘夫西林的质量浓度范围在0.2~10 mg·L-1 时,应用拉曼峰强度比值所建立的四种标定曲线均具有良好的线性关系,决定系数均大于0.95。其中三种标定曲线具有较高的准确度,其回收率介于88%~144%。由此可见,应用SERS检测鸭肉中萘夫西林的残留是可行的,该方法简便、快速,为检测禽肉类食品中萘夫西林的残留提供了技术支持。  相似文献   

9.
自行搭建的拉曼光谱点扫描系统,以柠檬酸钠还原法配制的SC银溶胶为表面增强剂,建立了桂花酒中山梨酸钾的定量预测模型,模型校正集决定系数(R2C)和均方根误差(RMSEC)分别为0.978 9和0.070 3 g·kg-1,验证集决定系数(R2P)和均方根误差(RMSEP)分别为0.934和0.165 7 g·kg-1。桂花酒中山梨酸钾的定量预测模型为主光谱模型,结合K/S算法,探讨了基于DS算法和PDS算法将桂花酒主光谱模型向杨梅酒的修正传递方法。结果显示,用K/S算法选取4个杨梅酒样品,基于DS算法传递桂花酒主光谱模型验证结果RP和RMSEP值分别为0.906 1和0.215 0 g·kg-1。K/S算法选取3个杨梅酒样品(窗口宽度为5),基于PDS算法传递桂花酒主光谱模型验证结果RP和RMSEP值分别为0.905 5和0.225 0 g·kg-1。DS算法和PDS算法均可以用少量样品将桂花酒中山梨酸钾的主光谱预测模型有效传递给杨梅酒,实现了一种被测物预测模型在同类物种间的传递,具有重要实用意义。  相似文献   

10.
基于SERS与PCA-SLR实现乙基对氧磷定量检测   总被引:1,自引:0,他引:1  
利用表面增强拉曼光谱(SERS),结合主成分分析(PCA)与分段线性回归(SLR)算法实现乙基对氧磷的定量检测。首先采集820~1 630 cm-1乙基对氧磷溶液SERS,并对820~1 630 cm-1(全范围)与845~875 cm-1(特征范围)光谱分别进行标准正态变换(SNV)、多元散射校正(MSC)、一阶导数绝对值、二阶导数等预处理;然后经PCA降维后利用SLR建立乙基对氧磷溶液浓度预测模型。通过对比不同模型的预测准确度,发现特征范围光谱采用MSC预处理后所建立的模型为最优,总体预测均方误差值(RMSEP)为0.33,满足乙基对氧磷定量检测的需要。  相似文献   

11.
遥感是开展地面/近地面、航空及航天层次无损伤探测植物叶绿素信息的主要手段。目前多波段计算光谱指数方法已被广泛地应用于植被冠层叶绿素含量的经验/半经验反演及应用中。考虑不同作物及同种作物不同品种间存在着一定的植被叶倾角分布(LAD)特征差异,针对叶倾角分布对光谱指数反演冠层叶绿素含量(CCC)的影响进行分析,并开展针对叶倾角分布变化不敏感的叶绿素相关光谱指数优选和冠层叶绿素反演建模研究。基于PROSAIL辐射传输模型模拟了不同叶片叶绿素含量(LCC)、叶面积指数(LAI)和LAD对应的冠层反射率数据。模拟结果显示,在相同LAI和LCC条件下,不同LAD对应的冠层反射率有明显差异,冠层反射率随着平均叶倾角的增加而降低。通过计算12个常用的叶绿素相关光谱指数与CCC的相关性指标,来评估光谱指数在不同LAD下反演叶绿素含量的敏感性差异,并依次优选出MTCI,MNDVI8,MNDVI1和CIred-edge4个对LAD变化较不敏感的叶绿素相关光谱指数。利用玉米实测数据对光谱指数进行冠层叶绿素估测的建模和模型检验,模型的建立和验证结果显示,MNDVI8对LAD变化最不敏感,反演模型的精度最高,决定系数R2=0.70,均方根误差RMSE=22.47 μg·cm-2。CIred-edge(R2=0.63,RMSE=24.06 μg·cm-2),MNDVI(R2=0.66,RMSE=24.07 μg·cm-2)和MTCI(R2=0.65,RMSE=26.76 μg·cm-2)反演模型的精度较为接近并稍弱于MNDVI8。通过对反演结果分析得出结论,不同的光谱指数对LAD变化的敏感性不同,优选的光谱指数普遍对叶绿素含量具有较好的相关性和敏感性,其中MNDVI8受LAD影响最小,能较高精度的反演LAD变化下的玉米冠层叶绿素含量。优选的其他光谱指数MTCI,CIred-edge和MNDVI1反演能力虽然稍弱于MNDVI8,但受LAD影响较小,同样具有较好的反演能力。该工作开展LAD对光谱指数叶绿素反演的敏感性分析和光谱指数优选研究,其实测数据的检验结果和模拟数据的分析结果一致;基于优选光谱指数的冠层叶绿素含量反演建模结果及精度分析结论,对开展缺乏叶倾角分布差异先验知识下的大范围作物叶绿素含量遥感估测和应用具有借鉴意义。  相似文献   

12.
叶绿素含量是评价农作物健康状况、生产能力和环境胁迫的重要指标,实时、快速、准确获取农作物叶片叶绿素含量对监测农作物生长状况具有重要意义.遥感是获取区域和全球农作物叶片叶绿素含量的有效途径,但已有的作物叶片叶绿素含量遥感反演研究未充分考虑下垫面背景的干扰,影响了反演精度.为此,以Sentinel-2遥感卫星影像为数据源,...  相似文献   

13.
以柠檬酸和尿素为碳源和氮源,采用固态法一步合成出量子产率高达23%的荧光碳点。表征结果表明,所合成的荧光碳点为平均粒径为3~4 nm的球形,表面富含羟基、羧基和胺基等基团。此外,碳点的XRD谱图显示出无定型碳的特征峰。以所制备的碳点为荧光探针,基于碳点和阿霉素之间的共振能量转移而猝灭碳点的荧光,建立了阿霉素定量分析新方法。实验中考察了溶液的pH值和孵化时间的影响。在最佳实验条件下,阿霉素浓度在0.67~16.67 μg·mL-1范围之间与碳点的荧光猝灭值ΔF呈良好的线性关系(R2=0.995),检出限为0.22 μg·mL-1,回收率为83.0%~89.2%,相对标准偏差小于2.5%(n=5)。尿样中常见物质对测定干扰较小,显示出所建立的方法具有较好的选择性。  相似文献   

14.
人体唾液与血液中的相应成分有着密切关系。利用唾液代替血液进行检测,可极大地缩短分析时间、减少检测限制、降低安全隐患等,因此在临床医学、毒品管控等方面均有重要意义。发展了便携式拉曼光谱仪利用表面增强拉曼光谱技术快速定量检测唾液中盐酸吡格列酮(口服降血糖药物)含量的方法。借助纳米金溶胶的表面增强拉曼散射效应,在激发光源波长为785 nm时,可以得到低浓度盐酸吡格列酮的高质量拉曼光谱图。同时,不同浓度盐酸吡格列酮表面增强拉曼光谱分析结果表明,该方法还可直接用于唾液中盐酸吡格列酮的定量检测。盐酸吡格列酮含量与其特征峰强度线性相关,相关系数为0.992 3,且最低检测浓度达10 μg·L-1。  相似文献   

15.
左旋咪唑是一种广谱抗虫药,被广泛应用于抗猪、牛等牲畜体内的线虫。同时左旋咪唑具有特殊的免疫调节作用,在动物养殖中常用于抗菌消炎、抗病毒、促生长等方面。当其被不合理使用时容易在禽畜肉中产生残留,目前常见的左旋咪唑检测方法为液相色谱法与气相色谱法,该类方法具有操作复杂、耗时长、成本高等缺点。表面增强拉曼光谱法具有分析速度快、检测灵敏度高和特异性好等优点,近年来被广泛应用于农残、兽残等物质的快速检测。为实现猪肉中左旋咪唑残留的快速检测,建立了一种猪肉中左旋咪唑残留的表面增强拉曼光谱快速检测方法。通过单因素实验,确定了金胶与样品溶液最佳体积比和最适积分时间分别为2∶1与20 s。通过比较不同萃取方法与萃取溶剂对猪肉中左旋咪唑盐酸盐残留量的提取效果,确定了正己烷液液萃取后离心、取上清液氮吹复溶的操作简单、耗时短的提取条件。通过密度泛函理论中B3LYP/6-311+G(d)基组对左旋咪唑盐酸盐理论光谱进行计算,在优化分子结构后进行频率与拉曼光谱计算,所得理论计算光谱与固体光谱、溶液光谱出峰情况具有较好的一致性。根据理论计算光谱、固体光谱与溶液光谱确定左旋咪唑盐酸盐的SERS特征峰并进行振动归属,得到469,627和969 cm-1处特征峰作为左旋咪唑盐酸盐的定量特征峰,其中469 cm-1为C—S键伸缩振动,627 cm-1为苯环C—C弯曲变形振动,969 cm-1为咪唑环面内弯曲和侧链骨架振动。在最佳实验条件下,建立了左旋咪唑盐酸盐标准溶液特征峰SERS信号与浓度的标准曲线,线性方程R2值均在0.9以上。对不同加标浓度的实际样品进行检测,得到平均回收率为80.39%~95.94%,RSD值为3.08%~6.20%。该法操作简便、稳定性好,无需对样品进行复杂的预处理即可实现对猪肉中左旋咪唑残留的快速准确测定。  相似文献   

16.
畜禽养殖中抗生素的不合理使用导致畜禽产品中抗生素残留问题时有发生,进而通过食物链影响食品安全,威胁人类健康。准确、快速检测出抗生素药物的含量对保障食品安全具有重要意义。以残留较为常见的喹诺酮类诺氟沙星抗菌药为研究对象,开展基于太赫兹光谱技术的诺氟沙星较大梯度和较小梯度的全浓度含量检测研究。在较大梯度诺氟沙星样本中,首先,在1%~100%范围内设置了11个浓度,完成较大梯度压片样本制备;然后经太赫兹时域光谱系统扫描获取其时域光谱,提取样本的吸收系数,用卷积平滑S-G二项式拟合滤波去除噪声、平滑样本光谱数据。发现纯净的诺氟沙星在1.205 THz处存在一个强烈吸收峰,在0.816 THz处存在一个弱吸收峰。最后,利用逐步回归和连续投影法(SPA)选择变量并结合特征吸收峰进行多元线性回归建模预测分析。进一步在较小梯度诺氟沙星样本研究中,首先在浓度100 μg·mL-1(0.01%)以下设置了29个浓度系列,完成较小梯度溶液样本制备;然后获得其太赫兹时域光谱,用S-G二项式拟合滤波进行数据预处理,发现各浓度的吸收光谱未出现明显差异,最后利用逐步回归和连续投影法(SPA)选择变量结合特征吸收峰实现多元线性回归建模预测分析。结果表明:在较大梯度诺氟沙星样本中逐步回归选择变量的多元线性回归达到了模型最优(Rp=0.962, RMSEP=2.74%),准确率优于当前已有最优预测模型(Rp=0.867, RMSEP=16.6%);小梯度诺氟沙星样本的逐步回归选择变量的多元线性回归模型最优(Rp=0.728, RMSEP=18.79 μg·mL-1),该方法有一定的预测能力,但是准确率有待提升。利用太赫兹光谱技术实现了较全浓度诺氟沙星的检测,为后续诺氟沙星检测限的探索等进一步研究提供了一定的研究基础。  相似文献   

17.
滨海盐碱区土壤盐分的快速、准确监测对土地合理利用和保护具有重要意义。可见光近红外(Vis-NIR)光谱技术已广泛用于土壤属性的高效估测。然而,水分对含盐土壤光谱的干扰导致传统土壤盐分估测模型的精度降低。旨在探究分段直接标准化(PDS)和正交信号校正(OSC)在含水条件下土壤盐分估测中的应用,从而建立面向滨海盐碱区的“除水”Vis-NIR定量模型。为此,将获取的144份黄河三角洲滨海盐碱区表层(0~20 cm)土壤盐分数据划分为建模集(17个样本)和验证集(127个样本)。通过严格加水控制实验,测量10个含水率梯度(0%,1%,5%,10%,15%,20%,25%,30%,40%和50%)的建模集土壤光谱数据,验证集的土壤光谱则是根据生成的1~50随机整数,通过随机加水实验测量获取。采用PDS和OSC与偏最小二乘回归(PLSR)结合的建模策略,构建土壤盐分估测模型,并进行性能验证和比较。结果表明,OSC比PDS更能有效减轻水分在土壤盐分估测中的建模干扰。具体来说,光谱校正前后生成的所有PLSR模型均取得一定的成功(R2P=0.79~0.91,RMSEP=2.6~3.98 g·kg-1,RPD=1.98~2.37)。OSC-PLSR模型的土壤盐分估测精度提高,R2P,RMSEP和RPD分别为0.91和2.6 g·kg-1和2.37。而PDS-PLSR模型效果不理想,R2P,RMSEP和RPD分别为0.79,3.98 g·kg-1和1.98。模型整体表现出了OSC-PLSR>PLSR>PDS-PLSR的土壤盐分估测性能。此外,提出了变量投影重要性(VIP)和Spearman相关系数(r)结合的分析策略,进一步探究了模型的估测机理。模型的重要波长(VIP>1)与土壤盐分敏感波长(|r|>0.4)吻合,对估测模型有重要意义。比较而言,OSC-PLSR精确提炼了位于830,1 940和2 050 nm附近的模型估测的关键波长,而常规的PLSR和PDS-PLSR包含了大量的冗余信息。综合来看,OSC-PLSR模型在Vis-NIR土壤盐分估测中具有较好的除水效果,为土壤含水状态下的土壤盐分研究提供可靠方法。  相似文献   

18.
胭脂红是一种应用广泛的食品色素,在各种食品、饮料的添加剂里都有它的身影,过量食用人工合成色素会严重危害健康。食物中色素一般都是多种联用,各种色素之间会相互产生干扰,这加大了对食品中色素检测的难度,模拟食品中多种色素共存的环境,采用荧光光谱技术,结合PSO-SVM算法,建立一种测定混合溶液中胭脂红含量的方法。从试剂公司购买胭脂红和苋菜红固体粉末,选择胭脂红为待检测色素,苋菜红为干扰色素,配成不同浓度的胭脂红单色溶液以及加入苋菜红后的混合溶液样本,其中胭脂红的浓度在0.1~30 μg·mL-1之间,干扰色素苋菜红的浓度在0.1~10 μg·mL-1之间随意添加。运用Edinburgh Instruments 公司生产的FS920稳态荧光光谱仪, 测得胭脂红单色溶液与加入苋菜红后混合溶液的荧光光谱图,分析得到胭脂红的最佳激发波长为λex=326 nm,最佳发射波长为λem=430 nm。各选取6组不同浓度的单色样本以及混合色素样本,其中,胭脂红的物质浓度同为3,4,5,6,7和8 μg·mL-1,苋菜红的物质浓度都定在2 μg·mL-1。观察6组样本在激发波长λex=326 nm时的发射光谱和荧光强度的关系。单色样本中,胭脂红浓度与荧光强度线性关系良好;而在混合溶液中,随着胭脂红浓度的增加,荧光强度呈现出先降后增再降的过程,光谱线型、强度与各组分浓度间存在复杂的非线性关系,得以证明混合溶液的荧光光谱并不是由各组分光谱简单的叠加,而是在吸收光谱的过程中,胭脂红溶液与苋菜红溶液存在竞争和相互影响。配取25组胭脂红、苋菜红混合溶液,从中选择7个作为预测样本,其余18组作为训练样本。7 个预测样本中胭脂红的浓度分别为 1.0,2.0,4.0,6.0,9.0,12和15 μg·mL-1,干扰物质苋菜红的物质浓度在0.1~10 μg·mL-1之间。选择各组样本在最佳激发波长λex=326 nm 下对应的荧光强度,作为检测模型的输入,以胭脂红的预测浓度作为输出。对PSO参数初始化设置后,训练输出SVM的最佳参数c和g,将所得的最佳参数输入PSO-SVM模型, 得到7组预测样本的浓度预测结果分别为:1.146 9,1.860 6,3.854 4,6.146 9,9.133 8,11.857 6和14.859 8 μg·mL-1。分析PSO-SVM的预测结果,得到胭脂红平均回收率为100.84%,预测均方根误差(RMSEP)为1.03×10-4,模型输出与真实值之间的相关系数是0.999。在同等条件下,采用误差逆向传播算法(BP)预测得到的7组样本浓度分别为:1.140 1,2.139 8,3.188 2,6.436 2,8.882 7,11.860 1和12.664 3 μg·mL-1,其平均回收率为98.56%,均方根误差为4.65×10-3,输出值与真实值之间的相关系数为0.972。与误差逆向传播算法(BP)的预测结果相比较,PSO-SVM 相关系数高出2.7%,平均回收率高出0.6%,均方根误差降低了将近一个数量级。分析结果表明,通过荧光光谱技术与PSO-SVM相结合的方法,能够有效的避开干扰色素的影响,准确的测定混合溶液中胭脂红的含量,并且效果相比较于BP更加理想。  相似文献   

19.
优化光谱指数的露天煤矿区土壤重金属含量估算   总被引:1,自引:0,他引:1  
光谱学提供了对土壤中许多元素进行定量分析和快速无损检测的方法。可见光和近红外反射光谱(Vis-NIR)为研究土壤重金属污染提供了一个有用的工具。于新疆准东露天煤矿区采集51个0~10 cm深度的土壤样品,在实验室中分别测定样品的有机质(SOM)含量、重金属砷(As)含量与高光谱;使用基于JAVA语言自主开发的两波段组合软件V1.0(No: 2018R11S177501)计算不同高光谱数据变换形式(原始反射率(R),倒数(1/R),对数(lgR)和平方根()下Vis-NIR区域(400~2 400 nm)所有两波段组合得到的优化光谱指数(NPDI)与As的相关性,在最优光谱指数(|r|≥0.73和p=0.001)中通过变量重要性准则(VIP)进一步筛选VIP≥1的指数作为模型自变量,基于地理加权回归(GWR)模型估算As含量并使用四个交叉验证度量标准:相对分析误差(RPD),决定系数(R2),均方根误差(RMSE)和最小信息准则(ACI)评价模型精度,从而探讨优化光谱指数方法应用于高光谱检测露天煤矿区土壤重金属砷含量的可行性。结果表明:(1)研究区As含量离散度较高,所有样品中SOM含量均小于2%,且As含量与SOM含量在0.01的显著性水平上无显著相关性(|r|=0.113)。(2)As含量与单波段光谱反射率的相关性很低(|r|≤0.228),而通过R,1/R,lgR计算的NPDIs与As含量的相关性在近红外(NIR,780~1 100 nm)和短波红外(SWIR,1 100~1 935 nm)光谱中发现最高的相关系数和最低的p值(|r|≥0.73和p=0.001),在长波近红外(LW-NIR)区域基于R形成的NPDIs与As含量相关性最高(|r|=0.74)。(3)VIP方法分别筛选NPDIR(1 417/1 246),NPDI1/R(799/953,825/947)、NPDIsqrt-R(1 023/1 257,1 008/1 249,1 021/1 250,1 020/1 247)和NPDIlgR(801/953,811/953,817/951,825/947,828/945)为GWR模型自变量。(4)从4个预测模型的表现可以看出,Model-a(R)与其他三个模型(Model-b(1/R),Model-c()和Model-d(lgR))相比,它具有最高的验证系数(R2=0.831,RMSE=4.912 μg·g-1,RPD=2.321)和最低的最小信息准则值(AIC=179.96)。优化光谱指数NPDIR(1 417/1 246)有助于快速准确地估算As含量,为进一步获取地表土壤重金属污染分布信息提供理论支持和应用参考,促进露天煤矿区环境污染快速有效调查和生态可持续发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号