首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
H2及H+对CxH1-x薄膜表面状态的影响   总被引:17,自引:13,他引:4       下载免费PDF全文
系统研究了H2流量和H^+原位处理CxH1-x薄膜的时间对CxH1-x薄膜的稳定时间、表面悬挂键密度和表面电子局域化程度的影响,表明CxH1-x薄膜的长时间H^+原位处理是减小CxH1-x薄膜表面悬挂键密度的有效途径。  相似文献   

2.
用UPS技术获得了GD a-Si_(1-x)C_x:H合金薄膜的价带谱,分析了掺杂和表面氧化对价带谱的影响,并结合XPS,AES等电子能谱测试手段,对这种材料的价电子分布和键合特性作了初步的研究。  相似文献   

3.
氢化氮化硅薄膜在晶体硅太阳电池工艺中是一种有效的减反射、钝化薄膜.利用Centrotherm公司的直接法低频PECVD设备在抛光后的p型硅衬底(1.0 Ωcm)表面制作氢化氮化硅,得到了具有较好钝化效果且折射率为2.017~2.082的薄膜.随着压强的增加,薄膜的折射率略有增加.利用傅里叶变换红外光谱技术研究了薄膜中成键结构特性随压强的变化.结果表明沉积压强强烈的影响了H键的浓度和Si-N键的浓度.其中硅的悬挂键浓度是影响薄膜钝化特性的关键因素.最后给出了样品有效少子寿命随时间的衰减特性,并利用成键结构对钝化的影响给出了这种衰减的原因.  相似文献   

4.
本文系统地研究了77K下掺杂(B或P)的a-Si_(1-x)C_x:H膜在平衡状态和弱光照下的ESR 特性,文中报道了该膜价带尾态中定域化空穴的ESR吸收谱。实验结果还表明:虽然a-Si_(1-x)C_x:H膜中由于B掺杂会引起光电导的改善,但却不能使悬挂键总浓度减小。  相似文献   

5.
研究了电子束蒸发a-Si1-xNdx的薄膜的ESR参数g因子、线型因子l,峰-峰线宽△Bpp、自旋密度Ns随组分x变化的特性.基于这类薄膜的光吸收和电导特性,应用带Nd背键的悬挂键模型分析讨论了这些变化特性的物理原因.  相似文献   

6.
镶嵌有纳米硅的氮化硅薄膜键合特性分析   总被引:3,自引:2,他引:1  
采用螺旋波等离子体化学气相沉积(HWPCVD)技术制备了非化学计量比的氢化氮化硅薄膜,对所沉积样品及氮气环境中920 ℃退火样品的微观结构及键合特性进行了分析。Raman散射结果表明,薄膜中过量硅以非晶纳米粒子形式存在,退火样品呈现纳米晶硅和氮化硅的镶嵌结构。红外吸收和可见光吸收特性比较结果显示,薄膜样品的微观结构依赖于化学计量比以及退火过程,硅含量较低样品因高的键合氢含量而表现出低的纳米硅表面缺陷态密度;退火过程将引起Si—H和N—H键合密度的减少,因晶态纳米颗粒的形成,退火样品表现出更高的结构无序度。  相似文献   

7.
采用磁控溅射技术制备了铒掺杂的氢化非晶硅(a-Si∶H(Er))样品.进一步通过200—500℃温度递增的后退火处理,获得了不同的Si悬挂键(Si-DBs)密度,并在此基础上研究了Si-DBs密度改变对其Er光荧光(Er-PL)的影响.退火温度低于350℃时,Er-PL强度持续增加,但Si-DBs密度的变化显得较复杂;350℃以上时,Er-PL强度随Si-DBs密度的增加而减小.在200—250℃的退火温度范围内,Si-DBs是由于结构弛豫而减少;在250—500℃的退火温度范围内,可能由于Si—H键的断 关键词: 氢化非晶硅 铒掺杂 Si悬挂键 光荧光  相似文献   

8.
梁培  刘阳  王乐  吴珂  董前民  李晓艳 《物理学报》2012,61(15):153102-153102
利用第一性原理方法, 本文计算了B/N单掺杂SiNWs, 以及含有表面悬挂键的B/N单掺杂硅纳米线的总能和电子结构, 计算结果表明, 悬挂键的出现会导致单原子掺杂失效. 能带结构分析表明, B/N掺杂的H钝化的SiNWs表现出正常的p/n特性, 而表面悬挂键(dangling binding, DB)的存在会导致p型(B原子)或者n型(N原子)掺杂失效; 其失效的原因主要是因为表面悬挂键所引入的缺陷能级俘获了n型杂质(p型杂质)所带来的电子(空穴); 利用小分子(SO2)吸附饱和悬挂键可以起到激活杂质的作用, 进而实现Si纳米线的有效掺杂.  相似文献   

9.
利用磁控溅射法,采用亚分子分层掺杂技术交替溅射Co靶和ZnO靶,在Si衬底上制备了不同氢氩流量比的H:ZCO薄膜样品,研究了氢氩流量比对薄膜结构特性和磁学性能的影响。所制备的薄膜样品具有c轴择优取向。由于H对表面和界面处悬挂键的钝化作用,随H2流量比的增加,薄膜的择优取向变差。磁性测量结果显示,薄膜样品的铁磁性随着氢氩流量比的增大而增强。XPS结果表明,随着H含量的增大,金属态Co团簇的相对含量逐渐增加,而氧化态Co离子的相对含量逐渐减小。H:ZCO样品中的铁磁性可能来源于Co金属团簇,H的掺入促使ZnO中的Co离子还原成Co金属团簇,从而增强了薄膜样品的室温铁磁性。  相似文献   

10.
曹宇  张建军  严干贵  倪牮  李天微  黄振华  赵颖 《物理学报》2014,63(7):76801-076801
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,使用SiH4加GeH4的反应气源组合生长微晶硅锗(μc-Si1-x Gex:H)薄膜.研究了电极间距对μc-Si1-x Gex:H薄膜结构特性的影响.发现薄膜中的Ge含量随电极间距的降低逐渐增加.当电极间距降至7 mm时,μc-Si1-x Gex:H薄膜具有较大的晶粒尺寸并呈现较强的(220)择优取向,同时具有较低的微结构因子.通过薄膜结构特性的变化分析了反应气源的分解状态,认为Ge含量的提高主要是SiH4的分解率降低所导致的.在较窄的电极间距(7 mm)下,等离子体中GeH3基团的比例较大,增强了Ge前驱物的扩散能力,使μc-Si1-x Gex:H薄膜的质量得到提高.  相似文献   

11.
The ability of the Si(001) surface to adsorb H2 molecules dissociatively increases by orders of magnitude when appropriate surface dangling bonds are terminated by H atoms. Through molecular beam techniques the energy dependent sticking probability at different adsorption sites on H-precovered and stepped surfaces is measured to obtain information about the barriers to adsorption, which decrease systematically with an increase in coadsorbed H atoms. With the help of density functional calculations for interdimer adsorption pathways, this effect is traced back to the electronic structure of the different adsorption sites and its interplay with local lattice distortions.  相似文献   

12.
The effect of the dangling bond on the electronic and magnetic properties of BN nanoribbon with zigzag edge (ZBNNR) and armchair edge (ABNNR) have been studied using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. Though ZBNNR or ABNNR with H atom terminated at both edges is nonmagnetic semiconductor, the dangling bond induces magnetism for the ZBNNR with bare N edge, bare B edge, bare N and B edges, the ABNNR with bare N edge and bare B edge. However, the ABNNR with bare N and B edges is still nonmagnetic semiconductor due to the strong coupling of the dangling bonds of dimeric N and B atoms at the same edge. The magnetic moment of ZBNNR with bare N(B) edge is nearly half the magnetic moment of ABNNR with bare N(B) edge. Such a half relationship is also existed in the number of the dangling bond states appeared around the Fermi level in the band structures. Furthermore, the dangling bond states also cause both ZBNNR and ABNNR with bare N edge a transition from semiconducting to half-metallic and thus a completely (100%) spin-polarization, while cause both ZBNNR and ABNNR with bare B edge as well as ABNNR with bare N and B edges only a decrease in their band gap.  相似文献   

13.
In this work we demonstrate that the room-temperature deposition of the organic molecule 9,10-phenanthrenequinone (PQ) reduces the surface defect density of the silicon (100) surface by chemically bonding to the surface dangling bonds. Using various spectroscopic measurements we have investigated the electronic structure and band alignment properties of the PQ/Si interface. The band-bending at the PQ-passivated silicon surface is negligible for both n- and p-type substrates, demonstrating a low density of surface defects. Finally we show that PQ forms a semiconducting wide-bandgap type-I heterojunction with silicon.  相似文献   

14.
The effect of phosphorus passivation on 4H-SiC(0001) silicon(Si) dangling bonds is investigated using ab initio atomistic thermodynamic calculations. Phosphorus passivation commences with chemisorption of phosphorus atoms at high-symmetry coordinated sites. To determine the most stable structure during the passivation process of phosphorus, a surface phase diagram of phosphorus adsorption on SiC(0001) surface is constructed over a coverage range of 1/9–1 monolayer(ML). The calculated results indicate that the 1/3 ML configuration is most energetically favorable in a reasonable environment. At this coverage, the total electron density of states demonstrates that phosphorus may effectively reduce the interface state density near the conduction band by removing 4H-SiC(0001) Si dangling bonds. It provides an atomic level insight into how phosphorus is able to reduce the near interface traps.  相似文献   

15.
Based on first-principles within the framework of the density functional theory, we have studied the magnetic coupling properties of Mn-doped AlN nanowires. By analyzing the results of different Mn-doped AlN nanowires, we found that for the passivated nanowire, ferromagnetic state is more stable, while for the unpassivated nanowire, the favorable state transits into anti-ferromagnetic state, which can be well explained by the band coupling model. The results indicate that the degree of surface passivation of dangling bonds is an important factor in the magnetic properties of doped nanowires.  相似文献   

16.
The interaction of atomic hydrogen with a-Si:H films was studied by means of in situ ESR during H plasma treatment. H diffuses into the a-Si:H film and creates additional Si dangling bonds ( approximately 10(13) cm (-2)). We observed a high diffusion coefficient (>10(-10) cm (2) s (-1)) at the very initial stage of H treatment (<1 s). The resulting additional dangling bonds are spatially distributed ( approximately 100 nm) into the bulk film. The characteristic depth of dangling bond (db) distribution decreases with increasing H treatment temperature. The activated rate constants of db creation and annihilation reactions determine the distribution of additional dangling bonds at different treatment temperatures.  相似文献   

17.
Xiangyang Peng 《Surface science》2006,600(18):3564-3569
A surprising metallization of the SiC(0 0 1)-(3 × 2) surface induced by hydrogen adsorption was discovered in recent experiments. The effect was ascribed to dangling bonds created on the third layer of the surface system by H adsorption and stabilized by steric hindrance. We have investigated the surface metallization by density functional calculations. Our total-energy minimizations show that dangling bonds on the third layer are very unstable. Instead, H adatoms form angular Si-H-Si bonds on the third layer after the asymmetric dimers on the top layer have been saturated by H forming monohydrides. The novel Si-H-Si bonds on the third layer give rise to a metallic surface, indeed. But the mechanism for metallization is very different from the one suggested originally. Likewise, H atoms can also occupy bridge positions in angular Si-H-Si bonds on the second layer and induce metallization, as well. In addition to monohydrides on the top-layer dimers, we have also investigated dihydride surfaces with additional H on the second and/or third layer. The dihydride surface structure with H adsorbed on both the second and third layers is energetically most favorable and is also metallic. In all three cases the new Si-H-Si bonds are the origin of the surface metallization while its nature is somewhat more intricate, as will be discussed.  相似文献   

18.
We report on new angle-resolved photoemission studies of Si(111) 2 × 1 and 7 × 7 surfaces. The emission from the 2 × 1 surface shows much structure. For normal emission the energy positions are insensitive to the photon energy in the range 19–27 eV. The emission has been interpreted as a probe of the surface density of states, SDOS, including both surface states, resonances and bulk-like states. The SDOS was also calculated as a function of parallel momentum k for a model of the Si(111) 2 × 1 surface obtained from energy minimization considerations. We identify emission from the dangling bond band, which has a positive dispersion of 0.6 eV, and also emission from surface resonances which have some character of the compressed and stretched back bonds. There are also other predicted surface resonances that correspond to experimental peaks which have not been identified in previous work. Except for the dangling bond band, the surface resonances are limited in k space, so that it is not possible to follow these resonance bands over all angles. Maximum intensity for the normal emission from the dangling bond is obtained at 23 eV, while the emission from the lowest s-like states monotonically increases towards 30 eV photon energy. When annealing the cleaved 2 × 1 surface to the 7 × 7 reconstructed surface, the spectra broaden significantly. The intensity of the dangling bond decreases and we see a very small metallic edge.  相似文献   

19.
In this work we study the structural stability and electronic properties of the Beryllium sulfide nanowires (NWs) in zinc-blende (ZB) and wurtzite (WZ) phases (with triangle and hexagonal cross sections), using first principle calculations within the plane-wave pseudopotential method. A phenomenological model is used to explain the role of dangling bonds in the stability of the NWs. In contrast to the bulk phase, the ZB-NWs with diameters less than 133.3 Å are found to be less favorable over the WZ-NWs, in which the surface dangling bonds (DBs) on the NW facets play an important role to stabilize the NWs. Furthermore, both ZB- and WZ-NWs are predicted to be semiconductor and the values of the band gaps are dependent on the surface DBs as well as the size and shape of the NWs. Finally, we obtain atom projected density of states (PDOSs) by calculating the localized density of states on the surface atoms, as well as on the core and edge atoms.  相似文献   

20.
The photoluminescence of glow discharge deposited a-Ge:H is studied. The spectra exhibit a two-band structure with an intrinsic band centered at 0.65 eV and a defect induced band near 0.5 eV, which is enhanced by using less favorable deposition conditions (low substrate temperature) and by hydrogen effusion. Even in films of good quality the quantum efficiency is only about 1 % of that of good a-Si:H-films. It is suggested that the non-radiative recombination centers are Ge- dangling bonds and that the low efficiency as compared to a-Si:H-films of similar defect density is due to the larger localization length of the db-states which enhances radiationless tunneling processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号