首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
脂质体由于其特殊的结构和性能,是一种很有发展潜力的药物载体,在医药和化妆品等行业具有广阔的应用前景。超临界逆向蒸发法是用超临界流体代替有机溶剂制备脂质体的方法,具有对水溶性药物脂质体制备过程简单、包覆率高等特点。以葡萄糖为模型药物,利用该方法制备出了葡萄糖脂质体,并详细考察了不同工艺条件对脂质体粒径和包覆率的影响。结果表明:用超临界逆向蒸发法可成功地制备出最小粒径为290nm、包覆率最高可达41.3%的葡萄糖脂质体。压力、温度和平衡时间对粒径和包覆率都有较大的影响。压力在10~30MPa时,随压力的增加,脂质体粒径显著减小至某一值后,基本趋于稳定,而包覆率逐渐增加,达到25.7%~27.5%,随后包覆率逐渐减小;温度在35~65℃时,随温度的增加粒径显著减小至最小值,然后逐渐增大,而包覆率一直增大,最高可达41.3%;平衡时间在15~45min时,随平衡时间的增加,粒径相对稳定,而包覆率显著增加,超过45min之后,粒径显著增加,包覆率显著下降。  相似文献   

2.
研究了动态高压微射流技术对木瓜蛋白酶活性的影响,并以荧光光谱为检测手段对木瓜蛋白酶的分子构象进行表征。结果显示,动态高压微射流处理(120~180 MPa)后,木瓜蛋白酶酶活降低。经180 MPa处理1次,木瓜蛋白酶相对酶活降至90.04%。随着处理压力的增加,木瓜蛋白酶分子、酪氨酸残基、色氨酸残基的荧光发射峰位置分别从对照组的334、285、277.5 nm红移至140 MPa处理组的335.5、285.5、278.5 nm,然后回移至180 MPa处理组的334、285、278 nm。在0~4℃放置24 h后,酶活进一步降低,木瓜蛋白酶和酪氨酸残基的荧光强度出现波动(降低、上升然后再降低),表明动态高压微射流处理(120~180 MPa)改变木瓜蛋白酶分子构象的效果较为明显,形成的新构象稳定性低。  相似文献   

3.
番茄红素脂质体的制备工艺   总被引:3,自引:0,他引:3  
采用逆相蒸发法和薄膜法两种方法制备番茄红素脂质体.筛选出制备高包封率脂质体的工艺为:卵磷脂与胆固醇之比为3:1,温度为35℃,番茄红素与磷脂比例为1:6,旋转速度为200r/min,此条件下番茄红素脂质体的最高包封率可达71.26%.  相似文献   

4.
黄芪多糖脂质体的制备   总被引:3,自引:1,他引:2  
李淑梅  杨帆  李睿 《光谱实验室》2008,25(2):164-166
采用逆相蒸发法和薄膜法制备黄芪多糖脂质体,并对脂质体的包封率进行了测定.结果表明,逆相蒸发法制备的为大单层脂质体,其包封率为44.32%;薄膜法制备的为复层脂质体,其包封率为36.28%,逆相蒸发法操作简单,所需仪器设备为常规仪器,再加上其制备的大单层脂质体包封容积大,包封率高,因此是一种黄芪多糖脂质体制备的理想方法.  相似文献   

5.
采用超高压技术处理胰蛋白酶,改变其空间结构,研究酶空间结构变化与酶活力之间的关系。采用傅立叶红外光谱(FTIR)检测超高压处理后胰蛋白酶的二级结构变化;采用荧光光谱检测处理后胰蛋白酶的三级结构;酶活力的检测采用福林酚法。结果显示,与未处理的相比,在37 ℃,不同压力(100~600 MPa)条件处理20 min,对胰蛋白酶活力影响显著(p<0.05)。其中,300 MPa处理,胰蛋白酶活力达到最大,较未处理的酶活提高了0.386倍。FTIR检测分析显示,300 MPa处理的胰蛋白酶,α-螺旋与β-转角的峰面积比值达到最大(2.749);内源性荧光光谱检测结果显示,当激发波长为295 nm,其荧光强度达到最高值(1 353);激发波长为280 nm,其荧光强度达到最高(4 262);外源性荧光光谱结果显示,当激发波长为228 nm,疏水氨基酸残基的荧光强度达到最高(2 022); 上述荧光强度的变化较0.1 MPa处理的胰蛋白酶均有显著差异(p<0.05)。结论:超高压处理影响胰蛋白酶的空间结构及酶活性。其中,胰蛋白酶活性与α-螺旋和β-转角的峰面积的比值、色氨酸等疏水氨基酸及酪氨酸残基暴露程度有关。  相似文献   

6.
为考察改性可溶性大豆多糖(MSSPS)对大米淀粉(RS)理化性质的影响,采用动态高压微射流技术,分别在80、120、170MPa的改性压力下,对可溶性大豆多糖(SSPS)进行了改性,得到了MSSPS。向多组RS中分别添加不同质量分数(5.0%,7.5%,10.0%和20.0%)的MSSPS和SSPS,研究其理化性质。结果表明:与SSPS组相比,MSSPS组RS的膨胀力、溶解度和透明度均有所提高;多糖改性压力对RS溶解度和透明度的影响尤为明显,当压力达到120MPa后,溶解度显著提高(P0.05),改性压力为170MPa、质量分数为5.0%的MSSPS组,RS透明度可达6.1%,提高近33%;析水率和凝胶硬度则随着添加量和改性压力的增大而显著下降(P0.05),表明MSSPS能显著提高RS的冻融稳定性,及改善储藏过程中RS的硬化等质构品质。用扫描电镜观察添加MSSPS前、后,4℃下老化7d的RS冻干样品,显示其结构变化为:中空腔壁变薄,空腔变大,类似蜂窝状的结构增多,故从微观结构上证明了MSSPS能降低RS析水率,提高冻融稳定性。研究结果表明:MSSPS对RS理化性质有显著影响,可通过提高冻融稳定性、透明度等,改善淀粉的外观、可接受度和质构品质。  相似文献   

7.
建立高效液相色谱法测定主动靶向氧化苦参碱脂质体包封率.主动靶向氧化苦参碱脂质体经洗脱柱分离后进行HPLC分析,以0.01mol/L醋酸铵(pH=7.0)∶乙腈=90∶10(V/V)为流动相,色谱柱为Agilent C18柱(5μm,4.6mm×150mm),柱温30℃;流速为1mL/min;紫外检测波长为215nm.氧化苦参碱在0.5-50μg/mL范围内线性关系良好(n=5,r=0.9997),最低定量浓度为0.5μg/mL(S/N> 10),回收率为98.5%,氧化苦参碱的低、中、高日内精密度与日间精密度RSD均小于3%.本法准确、灵敏,能较好的应用于主动靶向制剂氧化苦参碱脂质体包封率的测定.  相似文献   

8.
动态瞬时高压作用对膳食纤维酶解速度的影响   总被引:1,自引:0,他引:1  
 对纤维素酶对动态瞬时高压处理后膳食纤维的酶解速度进行了研究。豆渣膳食纤维(Dietary Fiber,DF)经微射流均质机的瞬时高压作用(Instantaneous High Pressure,IHP),在不同的压力以及同一压力的不同作用次数下产生不同粒径和密度,它们对应的酶解速度是不同的。纤维素酶水解膳食纤维产生纤维二糖和葡萄糖等还原糖,通过测定水解后还原糖的含量判断不同粒径和密度的膳食纤维的酶解速度。结果表明,在40~90 MPa的压力范围内随压力的增大物料粒径呈显著下降,物料密度随之增大,酶解速度增大,在90 MPa的均质压力下物料粒径达到最小,为202.4 nm;当压力继续增大时,物料因膨化作用,物料粒径呈增大趋势,但其密度开始减小,酶解速度继续增大,在140 MPa的均质压力下物料密度达到最小,为1.027 g/mL,此时酶解后还原糖含量最高,酶解速度最快。压力超过140 MPa后,由于超微颗粒间的团聚,物料的密度和粒径均增大,酶解速度减小。在90 MPa和140 MPa下对分别对物料进行多次的瞬时高压处理,发现随处理次数的增多物料粒径增大,体系密度先减小后增大,酶解速度减小。  相似文献   

9.
532 nm Nd:YAG激光的高效多波长受激喇曼转化   总被引:1,自引:0,他引:1       下载免费PDF全文
 Nd:YAG二倍频激光(532 nm)泵浦H2中的受激喇曼散射产生多级斯托克斯。其中一级、二级和三级斯托克斯的最高量子转换效率分别可达66%,60%和19%。在0.44 MPa下,可同时获得1 579 nm(19%),954 nm(30%),683 nm(33%),532 nm(14%),436 nm(3.7%)和368 nm(1.4%)的多波长输出。H2压力对多级斯托克斯转换有显著影响:高气压有利于产生高效的一级斯托克斯,而低气压则适合于高级斯托克斯和反斯托克斯的产生。  相似文献   

10.
郭亮  任博  王业伟  涂昕  张庆茂 《强激光与粒子束》2018,30(4):049001-1-049001-7
为了提高聚氨酯(PU)合成革透湿性,分别使用343 nm飞秒激光和作为对比的1030 nm飞秒激光及1064 nm纳秒激光制备微孔阵列。采用扫描电镜(SEM)和3D激光扫描显微镜对比研究了微孔形貌。结果表明,343 nm飞秒激光可以制备出效果最佳的微孔。此外,分析了3种激光与PU涂层的作用机理,揭示了343 nm飞秒激光合成革微钻孔过程仅表现为光化学烧蚀,光化学和光热烧蚀同时发生于1030 nm飞秒激光钻孔过程,而1064 nm纳秒激光只显示了光热烧蚀。激光合成革表面钻孔后,测量其透湿性和抗张力。结果显示: 微孔密度越大,皮革透湿性(WVP)越大而抗张力越低,脉冲重叠的增加会导致WVP的增加和抗张力的下降;同时,随着脉冲重叠从91.7%降到50%,微孔直径从45 μm降低到30 μm,而微孔锥度从0.7°增加到12.1°;当脉冲重叠率为91.7%,微孔密度为2550/cm2时,最大的WVP增长率为306%。  相似文献   

11.
In this study, an emulsion stabilized by soy protein isolate (SPI)-pectin (PC) complexes was prepared to investigate the effects of high-intensity ultrasound (HIU) treatment (150–600 W) on the physicochemical properties, microstructure, and stability of emulsions. The results found that the emulsion treated at 450 W showed the best emulsion stability index (ESI) (25.18 ± 1.24 min), the lowest particle size (559.82 ± 3.17 nm), the largest ζ-potential absolute value (16.39 ± 0.18 mV), and the highest adsorbed protein content (27.31%). Confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) revealed that the emulsion aggregation was significantly improved by ultrasound treatment, and the average roughness value (Rq) was the smallest (10.3 nm) at 450 W. Additionally, HIU treatment reduced the interfacial tension and apparent viscosity of the emulsion. Thermal stability was best when the emulsion was treated at 450 W, D43 was minimal (907.95 ± 31.72 nm), and emulsion separation also improved. Consequently, the creaming index (CI) was significantly decreased compared to the untreated sample, indicating that the storage stability of the emulsion was enhanced.  相似文献   

12.
Small liposome suspensions (hydrodynamic diameter, 80–130 nm) were nebulised, and the resulting changes in morphology and bilayer integrity were found to be related to surface properties controlled by bilayer composition. Four separate liposome compositions (or liposome types) were investigated using three different phospholipids with unique properties. Morphological changes were studied using light scattering and imaging of liposomes before and after nebulisation, and structural integrity was investigated on the basis of the retention of an encapsulated dye (probe molecule). Nebulisation generated droplets contained liposomes. The liposome particles generated on droplet evaporation had a hollow structure as evidenced by electron imaging, indicating that the lipid bilayer does not collapse on evaporation. The particles of all compositions had mobility diameters between 50 and 90 nm, 1.4–1.6 times smaller than their diameters (hydrodynamic) measured before nebulisation, implying considerable volume shrinkage. Liposomes that had polymer-conjugated lipids covering their external surface underwent aggregation during nebulisation, evidenced by increased diameter after nebulisation. Incorporation of charged lipids reduced nebulisation-induced aggregation, but induced greater membrane rupture during aerosol generation, causing leakage of encapsulated probe molecules. Incorporation of both cholesterol and charged lipids prevented aggregation, but also preserved bilayer integrity, evidenced by the maximum retention of encapsulated dye observed in these conditions (>85%). The findings suggest that liposome bilayer composition can be manipulated to improve the efficiency of liposome aerosol delivery.  相似文献   

13.
Di Chen  Junru Wu 《Ultrasonics》2010,50(8):744-749
A liposome with a diameter ranging from 150 to 200 nm has been considered to be one of the optimal vehicles for targeted drug delivery in vivo since it is able to encapsulate drug and also circulate in the blood stream stably. Its small size, however, makes controlled release of its encapsulated content difficult. A feasibility study for applications of high intensity focused ultrasound (HIFU) of the mega-hertz frequency to induce controlled release of its content was carried out. This study, using the dynamic light scattering and transmission electron microscopic observation, demonstrated 21.2% of encapsulated fluorescent materials (FITC) could be released from liposomes with an average diameter of 210 nm when exposed to continuous (cw) ultrasound at 1.1 MHz (ISPTA = 900 W/cm2) for 10 s and the percentage release efficiency can reach to 70% after 60 s irradiation. This result also reveals that rupture of relatively large liposomes (>100 nm) and generation of pore-like defects in the membrane of small liposomes (<100 nm) due to HIFU excitation might be the main causes of the release; the inertial cavitation took place during the irradiation. The controlled drug release from liposomes by HIFU may be proven to be a potential useful modality for clinical applications.  相似文献   

14.
The dependence of surface-enhanced fluorescence of the semiconducting polymer poly (3-hexylthiophene) on the diameter of silver nanoparticles was studied. Particle suspensions with a high degree of monodispersity, ranging in diameter from 15 to 153 nm, were synthesized. Polymer films were spin-cast onto substrates containing immobilized silver particles. Fluorescence enhancement factors ranged from 0.9 to 4.9 and generally improved with increasing particle size. Normalization of the fluorescence enhancement to the number of interrogated particles showed an 800-fold increase in enhancement between the smallest and largest particles.  相似文献   

15.
The arc emission method has been employed to measure transition probabilities for two hundred and seventy five lines of Cr(I) (of which thirty-five are blended) and for twenty-six lines of Cr(II) lying between 422 and 484 nm. The spectra were photographed by means of a large grating spectrograph. Plasma diagnostics were carefully performed to obtain accurate values of temperatures.The absolute scale was established for Cr(I) lines using precisely known Amn-values derived from life-time measurements for the resonance lines; for the Cr(II) lines, our absolute scale is based on accurate measurements for the line at 4242.56 Å. The smallest and largest errors estimated for the Amn-values are ±10% and ±40%. There is generally good agreement with previous experimental data, although our values sometimes deviate by factor of 2–3 from the calculated estimates.  相似文献   

16.
Liquid perfluorocarbon nanodroplets (NDs) are an attractive alternative to microbubbles (MBs) for ultrasound-mediated therapeutic and diagnostic applications. ND size and size distribution have a strong influence on their behaviour in vivo, including extravasation efficiency, circulation time, and response to ultrasound stimulation. Thus, it is desirable to identify ways to tailor the ND size and size distribution during manufacturing. In this study phospholipid-coated NDs, comprising a perfluoro-n-pentane (PFP) core stabilised by a DSPC/PEG40s (1,2-distearoyl-sn-glycero-3-phosphocholine and polyoxyethylene(40)stearate, 9:1 molar ratio) shell, were produced in phosphate-buffered saline (PBS) by sonication. The effect of the following production-related parameters on ND size was investigated: PFP concentration, power and duration of sonication, and incorporation of a lipophilic fluorescent dye. ND stability was also assessed at both 4 °C and 37 °C. When a sonication pulse of 6 s and 15% duty cycle was employed, increasing the volumetric concentration of PFP from 5% to 15% v/v in PBS resulted in an increase in ND diameter from 215.8 ± 16.8 nm to 408.9 ± 171.2 nm. An increase in the intensity of sonication from 48 to 72 W (with 10% PFP v/v in PBS) led to a decrease in ND size from 354.6 ± 127.2 nm to 315.0 ± 100.5 nm. Increasing the sonication time from 20 s to 40 s (using a pulsed sonication with 30% duty cycle) did not result in a significant change in ND size (in the range 278–314 nm); however, when it was increased to 60 s, the average ND diameter reduced to 249.7 ± 9.7 nm, which also presented a significantly lower standard deviation compared to the other experimental conditions investigated (i.e., 9.7 nm vs. > 49.4 nm). The addition of the fluorescent dye DiI at different molar ratios did not affect the ND size distribution. NDs were stable at 4 °C for up to 6 days and at 37 °C for up to 110 min; however, some evidence of ND-to-MB phase transition was observed after 40 min at 37 °C. Finally, phase transition of NDs into MBs was demonstrated using a tissue-mimicking flow phantom under therapeutic ultrasound exposure conditions (ultrasound frequency: 0.5 MHz, acoustic pressure: 2–4 MPa, and pulse repetition frequency: 100 Hz).  相似文献   

17.
冯力蕴  孔祥贵 《发光学报》2007,28(3):417-420
通过脂质体方法成功地将三辛基氧化膦(TOPO)包覆的CdSe发光量子点从非极性有机溶剂转移到生物相容性的水溶液中.分别通过透射电镜(TEM)、荧光Mapping图像,以及光致发光(PL)光谱进行表征.TEM照片显示制备的CdSe核量子点为球形,具有良好的单分散特性,平均粒径约为3nm.CdSe-脂质体复合体的平均尺寸大约20nm,TEM清楚地显示了CdSe量子点被诱捕在脂质体中.荧光Mapping显示了CdSe-脂质体复合体的发光强度分布.脂质体方法转移TOPO包覆的CdSe量子点,借助了磷脂的双分子链与CdSe表面的TOPO配体之间的疏水相互作用,在CdSe的第一配体层外部形成第二配体层,保留了CdSe的存在环境,光致发光光谱表明,量子点-脂质复合体基本保持了CdSe核量子点的发射效率.  相似文献   

18.
The in vitro contrast efficacy of liposome encapsulated gadolinium-[10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid] (GdHPDO3A) has been assessed by relaxometry. The internal concentrations were 150 and 250 mM Gd. Two types of liposome compositions were investigated: a phospholipid blend consisting of both hydrogenated phosphatidylcholine (HPC) and phosphatidylserine (HPS) with a gel-to-liquid crystalline phase transition temperature (Tm) of 50°C, and a mixture of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) with a Tm of 41°C. The investigated liposome size range was 70–400 nm. The T1 and T2 relaxivities (r1 and r2) of liposome encapsulated GdHPDO3A were significantly reduced at 37°C and 0.47 T, compared to those of non-liposomal metal chelate, due to an exchange limitation of the dipolar relaxation process. The highest relaxivity values were obtained for the DPPC/DPPG liposomes, and were attributed to a higher liposome water permeability and to a more efficient water exchange across the membrane. A reduction in liposome size increased the r1, confirming the exchange limited dipolar relaxation. The increased r1 with increasing temperature demonstrated the prerequisite of rapid water exchange between the interior and exterior of the liposome for efficient dipolar relaxation enhancement. Susceptibility effects were present in the liposome systems as the r2/r1 ratio increased with increasing liposome size and internal Gd concentration. In summary, the current work has shown the influence of key physicochemical properties, such as liposome size, membrane composition and permeability, on the in vitro relaxivity of liposome encapsulated GdHPDO3A.  相似文献   

19.
3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24) is an anti-proliferative diphenyldifluoroketone analog of curcumin with more potent activity. The authors describe a liposome preparation of EF24 using a “drug-in-CD-in liposome” approach. An aqueous solution of EF24 and hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex (IC) was used to prepare EF24 liposomes. The liposome size was reduced by a combination of multiple freeze–thaw cycles. Co-encapsulation of glutathione inside the liposomes conferred them with the capability of labeling with imageable radionuclide Tc-99m. Phase solubility analysis of EF24-HPβCD mixture provided k 1:1 value of 9.9 M−1. The enhanced aqueous solubility of EF24 (from 1.64 to 13.8 mg/mL) due to the presence of HPβCD helped in the liposome preparation. About 19% of the EF24 IC was encapsulated inside the liposomes (320.5 ± 2.6 nm) by dehydration–rehydration technique. With extrusion technique, the size of 177 ± 6.5 nm was obtained without any effect on encapsulation efficiency. The EF24-liposomes were evaluated for anti-proliferative activity in lung adenocarcinoma H441 and prostate cancer PC-3 cells. The EF24-liposomes demonstrated anti-proliferative activity superior to that of plain EF24 at 10 μM dose. When injected in rats, the Tc-99m-labeled EF24-liposomes cleared from blood with an α-t 1/2 of 21.4 min and β-t 1/2 of 397 min. Tissue radioactivity counting upon necropsy showed that the majority of clearance was due to the uptake in liver and spleen. The results suggest that using “drug-in-CD-in liposome” approach is a feasible strategy to formulate an effective parenteral preparation of EF24. In vitro studies show that the liposomal EF24 remains anti-proliferative, while presenting an opportunity to image its biodistribution.  相似文献   

20.
In this study, a new approach for the preparation of a fluorescent europium(III) complex-doped silica nanoparticles has been developed. The synthesis process involved the following steps: (1) preparing silica nanoparticles by water-in-oil microemulsion method, (2) dyeing the spherical silica particles by europium(III): naphtoyltrifluoroacetone (NTA):trioctylphosphineoxide (TOPO), (3) adsorbing polyvinylpyrrolidone (PVP) onto the core structure and growing silica on PVP surface. The as-prepared nanoparticles exhibited stronger emission intensity, higher photo- and chemical stability. Despite the fact that europium(III) complex was doped into the nanoparticles, its fluorescence properties such as a wide Stokes shift, a narrow emission peak, and long fluorescence lifetime, were retained. The nanoparticles are uniform in shape and size (50 ± 5 nm in diameter). This study could provide new avenue for the fabrication of Eu: NTA:TOPO-based nanoparticles, facilitating their application in bioassay issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号