首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MgZnO thin films, MgZnO/ZnO heterostructures (HS) and double heterostructures (DHS) have been prepared on a-plane sapphire substrates by means of pulsed laser deposition (PLD). A linear blueshift of the MgZnO emission with increasing Mg content is observed in photoluminescence spectroscopy (PL) at 2 K. Cathodoluminescence measurements verify the spatial homogeneity of the emission properties of the MgZnO films. The film roughness is evaluated from atomic force microscopy scans. In MgZnO/ZnO HS the ZnO grows on all appearing MgZnO facets. PL investigations of such PLD-grown heterostructures show the high optical quality of thin ZnO films (d≤100 nm) grown on MgZnO. Capping those structures with a thin MgZnO layer further improves their luminescence intensity and enhances the emission of free-exciton luminescence from the ZnO layers. MgZnO/ZnO/MgZnO DHS with nominal ZnO layer thicknesses of dnom≤6 nm show a clear intensification of the ZnO PL. Temperature dependent PL and transmission measurements between 4.4 and 300 K prove the dominating emission to be due to the recombination of excitons localized in the ZnO. At 2 K, due to confinement effects, their emission energy is blueshifted up to 51 meV compared to free excitons in bulk ZnO. PACS 81.15.Fg; 78.66.Hf; 68.37.Ps  相似文献   

2.
MgZnO薄膜及其量子阱和超晶格的发光特性   总被引:11,自引:4,他引:7  
MgO和ZnO形成合金MgxZn1-xO的带隙可以在3.3~7.9eV之间变化,在制备紫外波段光电器件方面有着广阔的应用前景.由ZnO和MgZnO交替沉积而成的ZnO/MgxZn1-xO量子阱和超晶格在激光器、光探测器和其他光电器件方面也有潜在的应用价值.回顾最近几年对MgZnO薄膜材料发光特性的研究进展,介绍在不同衬底上用不同方法制备MgZnO合金薄膜的制备技术、发光特性以及发光特性与薄膜中Mg含量的关系;综述近年来在ZnO/MgxZn1-xO超晶格、量子阱研究上的成果,特别介绍了ZnO/MgxZn1-xO对超晶格、量子阱的发光特性、发光机理以及发光特性与势垒层镁含量、器件温度的关系.  相似文献   

3.
Crystal orientation effects on electronic and optical properties of ZnO/MgZnO QW structures are investigated by taking into account the non-Markovian gain model with many-body effects. These results are compared with those for GaN-based QW structures. In a range of small crystal angles, ZnO/MgZnO QW structures have a lower internal field than GaN/AlGaN and InGaN/GaN QW structures. However, ZnO/MgZnO QW structures show a larger internal field than GaN-based QW structures at crystal angles near ${\theta =50^{\circ}}$ . The WZ ZnO/MgZnO QW structures are shown to have much larger optical gain than the GaN-based QW structures for small crystal angles. This is because WZ ZnO/MgZnO QW structures have larger matrix element and smaller effective masses than InGaN/GaN QW structures near the (0001) crystal orientation. On the other hand, in the case of the (10 ${\bar{1}}$ 0) crystal orientation, the optical gain of ZnO/MgZnO QW structures becomes smaller than that of InGaN/GaN QW structures due to the increase of the effective mass. In addition, the ZnO/MgZnO QW structures have a maximum in the optical gain near ${\theta =50^{\circ}}$ , which can be explained by the fact that the average hole effective mass increases although the matrix element at high carrier density is improved with increasing crystal angle.  相似文献   

4.
采用金属有机物化学气相沉积方法生长了立方相Mg0.56Zn0.44O:Ga薄膜,Ga在MgZnO中的摩尔分数为2.8%~4.5%。低掺杂水平的MgZnO可以保持其良好的结晶特性。随着Ga元素的摩尔分数升高至3.1%、3.3%与4.5%,立方相MgZnO中分别出现了Ga2O3、ZnO与ZnGa2O4分相。其中,Ga2O3与ZnGa2O4相的出现是由于Ga的掺杂使这两相在MgZnO基质中饱和析出,而ZnO分相被归因于Ga的引入部分破坏了立方MgZnO的亚稳态结构状态,使组分原本就处于分相区的立方MgZnO出现相分离。  相似文献   

5.
《Current Applied Physics》2015,15(9):1010-1014
A polycrystalline MgZnO/ZnO bi-layer was deposited by using a RF co-magnetron sputtering method and the MgZnO/ZnO bi-layer TFTs were fabricated on the thermally oxidized silicon substrate. The performances with varying the thickness of ZnO layer were investigated. In this result, the MgZnO/ZnO bi-layer TFTs which the content of Mg is about 2.5 at % have shown the enhancement characteristics of high mobility (6.77–7.56 cm2 V−1 s−1) and low sub-threshold swing (0.57–0.69 V decade−1) compare of the ZnO single layer TFT (μFE = 5.38 cm2 V−1 s−1; S.S. = 0.86 V decade−1). Moreover, in the results of the positive bias stress, the ΔVon shift (4.8 V) of MgZnO/ZnO bi-layer is the 2 V lower than ZnO single layer TFT (ΔVon = 6.1 V). It reveals that the stability of the MgZnO/ZnO bi-layer TFT enhanced compared to that of the ZnO single layer TFT.  相似文献   

6.
Within the framework of the effective-mass approximation, the exciton states confined in wurtzite ZnO/MgZnO quantum dot (QD) are calculated using a variational procedure, including three-dimensional confinement of carriers in the QD and the strong built-in electric field effect due to the piezoelectricity and spontaneous polarizations. The exciton binding energy and the electron-hole recombination rate as functions of the height (or radius) of the QD are studied. Numerical results show that the strong built-in electric field leads to a remarkable electron-hole spatial separation, and this effect has a significant influence on the exciton states and optical properties of wurtzite ZnO/MgZnO QD.  相似文献   

7.
Van’kov  A. B.  Kukushkin  I. V. 《JETP Letters》2021,113(2):102-114
JETP Letters - Extraordinary multiparticle effects in quantizing magnetic fields that are manifested in strongly interacting two-dimensional electron systems in MgZnO/ZnO heterostructures have been...  相似文献   

8.
JETP Letters - The microwave-induced photovoltage in two-dimensional electron systems in an AlAs quantum well and a ZnO/MgZnO heterojunction under the conditions of the quantum Hall effect is...  相似文献   

9.
ZnO-based heterojunction light emitting diodes (LEDs) with MgZnO barrier layer had been fabricated on the p-Si substrate by metal-organic chemical vapor deposition (MOCVD) technology. The current-voltage (I-V) characteristics exhibited a typical p-n diode behavior. Both ultraviolet (UV) and visible emissions could be detected in the electroluminescence (EL) measurement. The result was compared with the EL spectrum of n-ZnO/p-Si heterojunction LED without MgZnO barrier layer. An improved light extraction efficiency by about 31% was realized owing to the current-blocking effect of MgZnO layer. The result indicated that MgZnO barrier layer can prevent the electrons as expected and realize electron-hole recombination in ZnO layer effectively.  相似文献   

10.
11.
JETP Letters - The spin resonance of two-dimensional conduction electrons in a ZnO/MgZnO heterojunction in tilted magnetic fields is studied near the filling factor $$\nu = 2$$ . The analysis of...  相似文献   

12.
Kaysin  B. D.  Vankov  A. B.  Kukushkin  I. V. 《JETP Letters》2020,112(1):53-57
JETP Letters - The Raman study of strongly interacting two-dimensional electron systems based on ZnO/MgZnO has revealed an anomalously intense spectral line of the anti-Stokes component of the spin...  相似文献   

13.
We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.  相似文献   

14.
苏宇泉  陈明明  苏龙兴  祝渊  汤子康 《中国物理 B》2016,25(6):66106-066106
Stable nitrogen doping is an important issue in p-type ZnO research for device applications.In this paper,beryllium and magnesium are systematically compared as a dopant in ZnO to reveal their nitrogen-stabilizing ability.Secondary ion mass spectrum shows that Be and Mg can both enhance the stability of nitrogen in ZnO while Be has a better performance.Zn 2p and O 1s electron binding energies change in both MgZnO and Be ZnO thin films.Donor-acceptor luminescence is observed in the BeZnO samples.We conclude that Be is a better co-doping element than Mg for p-type ZnO:N.  相似文献   

15.
Quantum transport properties of two-dimensional electron gas (2DEG) in undoped MgZnO/ZnO heterostructures with polarization charge effect have been investigated theoretically. Polarization roughness scattering (PRS) combining polarization charge and interface roughness scattering was proposed as a new scattering mechanism. It was found that the carriers confined in the heterostructures (HSs) would be scattered from polarization charges when they were moving along the in-plane and PRS played a very important role for the low-temperature electron mobility when the electron density Ns exceeded 1.0e11 cm−2, especially in a higher electron density region. With PRS, the experimental data on the density dependence of 2DEG mobility in the MgZnO/ZnO HSs under study can be well reproduced. The study indicates that the improved processing techniques providing a smooth interface and a good separation between the 2DEG electrons and the polarization charges should be significant for the quantum device’s performance.  相似文献   

16.
Mg x Zn1-x O films with 0.15 mole composition of Magnesium were successfully deposited by the spin coating sol–gel method. Zinc acetate dihydrate and Magnesium acetate were used as starting precursors to prepare the solution in ethanol solvent. The MgZnO films were deposited on microscopic glass substrates and post annealed at three different temperatures. X-ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and UV–VIS Spectrophotometer were used to characterize the deposited films for studying structural and optical properties. Energy dispersive analysis by X-ray (EDAX) was used to determine incorporation of Mg content in ZnO films. XRD spectrum reveals that, the deposited Mg doped ZnO films were polycrystalline in nature. The intensity of c-axis in the XRD spectrum goes on decreasing as Mg composition slightly increasing corresponding to increase in annealing temperature. EDAX spectra clearly showed the incorporation of Mg into the ZnO films. Semiconductor characterization system was used for the I–V characterization of MgZnO films. I–V characteristics show decrease in current as increase in the biased voltage. Optical band gap of MgZnO films was found to be increased from 3.2 to 3.38 eV as estimated from the absorption coefficients.  相似文献   

17.
使用准分子脉冲激光沉积(PLD)方法在Si(100)基片上制备了高度c轴取向的MgZnO薄膜。分别使用SEM、XRD、XPS、PL谱和吸收谱表征了薄膜的形貌、结构、成分和光学性质。实验发现氧气压强对MgZnO薄膜的结构和光学性质有重要影响。当氧气压强由5 Pa增大到45 Pa时,薄膜的PL谱紫外峰蓝移了86meV,表明氧气压强的增大提高了MgZnO薄膜中Mg的溶解度。在15 Pa氧气压强下制备的薄膜显示了独特、均匀的六角纳米柱状结构,其PL谱展示了优异的发光特性,具有比其他制备条件下超强的紫外发射和微弱的可见发光。500~600 nm范围内的绿光发射,我们讨论其机理可能源于深能级中与氧相关的缺陷。使用PLD得到纳米柱状结构表明:优化制备条件,可望使用PLD制备ZnO纳米阵列的外延衬底;可使用PLD技术开发基于ZnO纳米结构的高效发光器件。  相似文献   

18.
The plasma oscillations in new advanced two-dimensional electron systems (2DESs) based on the heterostructures ZnO/MgZnO, AlAs/AlGaAs, and GaAs/AlGaAs are studied and compared. The relaxation times and the effective masses in samples with various electron densities in these 2DESs are found by microwave plasma spectroscopy. The specific features of the plasma oscillations in the AlAs/AlGaAs quantum wells that are induced by the filling of several valleys with electrons are revealed. The possibility of adjusting a plasmon spectrum via changing the electron concentrations in valleys is demonstrated.  相似文献   

19.
The optical and structural properties of mixed ZnO/MgO particles prepared by solution techniques are investigated by the cathodoluminescence and electron microscopy techniques. The samples annealed at 400–1000 °C show well crystalline wurtzite structure of the ZnO (MgZnO) particles with the size in range of 10–100 nm. Annealing at high temperatures (>700 °C) leads to Mg diffusion in ZnO and MgxZn1−xO alloy formation. The blue shifts of the near-band-edge emission as a result of the alloy band gap widening and quantum confinement effect for the small size particles are demonstrated.  相似文献   

20.
利用脉冲激光沉积技术在非晶石英衬底上制备立方结构MgZnO薄膜,并研究MgZnO薄膜结晶特性、光学带隙随生长温度的变化情况。当生长温度从150℃升高到700℃时,MgZnO薄膜的生长取向由(200)向(111)转变。在600℃以下,MgZnO薄膜光学带隙的变化规律与晶格中Mg和Zn原子比例的变化趋势是一致的;而当温度升至700℃时,虽然MgZnO晶格中Mg和Zn原子比例降低,但由于平均晶粒尺寸变大,薄膜的光学带隙反而上升。在300℃和700℃晶格匹配的情况下,获得了单一(200)和(111)取向的立方MgZnO薄膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号