首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two kinds of HfO2/SiO2 800 nm high-reflective (HR) coatings, with and without SiO2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO2 protective layer for HfO2/SiO2 HR coating with SiO2 protective layer. The relation of LIDT for two kinds of HfO2/SiO2 HR coatings in calculation agrees with the experiment result.  相似文献   

2.
A number of 355-nm Al2O3/MgF2 high-reflectance (HR) coatings were prepared by electron-beam evaporation. The influences of the number of coating layers and deposition temperature on the 355-nm Al2O3/MgF2 HR coatings were investigated. The stress was measured by viewing the substrate deformation before and after coating deposition using an optical interferometer. The laser-induced damage threshold (LIDT) of the samples was measured by a 355-nm Nd:YAG laser with a pulse width of 8 ns. Transmittance and reflectance of the samples were measured by a Lambda 900 spectrometer. It was found that absorptance was the main reason to result in a low LIDT of 355-nm Al2O3/MgF2 HR coatings. The stress in Al2O3/MgF2 HR coatings played an unimportant role in the LIDT, although MgF2 is known to have high tensile stress.  相似文献   

3.
Antireflection coatings at the center wavelength of 1053 nm were prepared on BK7 glasses by electron-beam evaporation deposition (EBD) and ion beam assisted deposition (IBAD). Parts of the two kinds of samples were post-treated with oxygen plasma at the environment temperature after deposition. Absorption at 1064 nm was characterized based on surface thermal lensing (STL) technique. The laser-induced damage threshold (LIDT) was measured by a 1064-nm Nd:YAG laser with a pulse width of 38 ps. Leica-DMRXE Microscope was applied to gain damage morphologies of samples. The results revealed that oxygen post-treatment could lower the absorption and increase the damage thresholds for both kinds of as-grown samples. However, the improving effects are not the same.  相似文献   

4.
Thermal boat evaporation was employed to prepare MgF2 single-layer coatings upon both JGS1 and UBK7 substrates at different substrate temperatures. Microstructure, transmittance and residual stress of these coatings were measured by X-ray diffraction, spectrophotometer, and optical interferometer, respectively. Measurement of laser induced damage threshold (LIDT) of the samples was performed at 355 nm, 8 ns pulses. The results showed that high substrate temperature was beneficial to crystallization of the film. Above 244 °C, the refractive index increased gradually with the substrate temperature rising. Whereas, it was exceptional at 210 °C that the refractive index was higher than those deposited at 244 and 277 °C. The tensile residual stresses were exhibited in all MgF2 films, but not well correlated with the substrate temperature. In addition, the stresses were comparatively smaller upon JGS1 substrates. A tendency could be seen that the LIDTs reached the highest values at about 244 °C, and the films upon JGS1 had higher LIDTs than those upon UBK7 substrates at the same temperature. Meanwhile, the damage morphologies showed that the laser damage of the coating resulted from an absorbing center at the film-substrate interface. The features of the damages were displayed by an absorbing center dominated model. Furthermore, the reason of the difference in LIDT values was discussed in detail.  相似文献   

5.
A series of Ta2O5 films with different SiO2 additional layers including overcoat, undercoat and interlayer was prepared by electron beam evaporation under the same deposition process. Absorption of samples was measured using the surface thermal lensing (STL) technique. The electric field distributions of the samples were theoretical predicted using thin film design software (TFCalc). The laser induced damage threshold (LIDT) was assessed using an Nd:YAG laser operating at 1064 nm with a pulse length of 12 ns. It was found that SiO2 additional layers resulted in a slight increase of the absorption, whereas they exerted little influence on the microdefects. The electric field distribution among the samples was unchanged by adding an SiO2 overcoat and undercoat, yet was changed by adding an interlayer. SiO2 undercoat. The interlayer improved the LIDT greatly, whereas the SiO2 overcoat had little effect on the LIDT.  相似文献   

6.
The feasibility of the idea of double stack HR coating was discussed in this paper both in theory and experiment. The theoretical simulation was made by employing optical coating design software. The analysis results showed that the design of double stack HR coating was feasible, which made the HR coating have ascendancy not only at reflectance but also at laser damage resistance. Then, the LaF3/MgF2 HR coating, the HfO2/SiO2 HR coating and the double stack HR coating were prepared for comparison, respectively. Transmittance spectra, surface morphologies and damage morphologies of these coatings were measured. Measurement of laser-induced damage threshold (LIDT) of S polarized light of the samples was performed at 355 nm, 45° incidence. The measurement results showed that the LIDT value of the LaF3/MgF2 HR coating with 30 layers was very high, but the reflectance was low. When the layer number was increased up to 36, lots of cracks appeared on the surface of the LaF3/MgF2 HR coating, with the LIDT badly declining. It was thought that the residual stress resulted in the cracks and the decline of the LIDT. The spectra measurement showed the double stack HR coatings could provide higher reflectance and wider reflection band than LaF3/MgF2 HR coating with less layer pairs. Any crack was also not found on the surface of the double stack coatings. Meanwhile, the double stack HR coatings possessed greater laser damage resistances than the HfO2/SiO2 HR coating. The damage morphologies showed that the damage of the double stack coating was even milder than that of the HfO2/SiO2 coating. Therefore, the double stack design was effective to gain high reflectance and great UV laser radiation resistance simultaneously.  相似文献   

7.
Laser induced damage thresholds (LIDT) of LaF3/MgF2 high reflectors at 355 nm were measured and investigated as a function of layer-pair number. Generally, LaF3/MgF2 coatings with more layer pairs possessed higher LIDT, but coatings with too high layer-pair number crazed because of high tensile stress, so the LIDT of them decreased badly. The temperature rise in the coatings was calculated based on a film-substrate interfacial absorption model, and the depth of the damage in the coatings were measured by a Veeco optical profilograph. The two characterization methods together were used to interpret the effects of layer-pair number on LIDT, and the damage mechanism of coatings at laser wavelength of 355 nm was also discussed.  相似文献   

8.
The mechanism of improving 1064 nm, 12 ns laser-induced damage threshold (LIDT) of TiO2/SiO2 high reflectors (HR) prepared by electronic beam evaporation from 5.1 to 13.1 J/cm2 by thermal annealing is discussed. Through optical properties, structure and chemical composition analysis, it is found that the reduced atomic non-stoichiometric defects are the main reason of absorption decrease and LIDT rise after annealing. A remarkable increase of LIDT is found at 300 °C annealing. The refractive index and film inhomogeneity rise, physical thickness decrease, and film stress changes from compress stress to tensile stress due to the structure change during annealing.  相似文献   

9.
Jianke Yao  Zhengxiu Fan  Jianda Shao 《Optik》2009,120(11):509-513
TiO2/SiO2 high reflectors with and without a SiO2 overcoat are deposited by electron-beam evaporation. The film properties are characterized by visible spectrometry measures, structure analysis, roughness and laser-induced damage threshold (LIDT) tests, surface defects and damage morphology observation. The effects of overcoats on LIDT at 532 nm, 8 ns and 800 nm, 220 ps laser pulses are investigated. The relations between film structure, roughness, surface defects, electric field and LIDT are discussed. It is found that overcoats can increase the LIDT at these two laser wavelengths. The reduction of peak temperature, the low defects density and roughness, the low intrinsic absorption of SiO2 and its amorphous structure are the main reasons for LIDT improvement by overcoats.  相似文献   

10.
真空退火对355nm Al2O3/MgF2高反射薄膜性能的影响   总被引:4,自引:2,他引:4       下载免费PDF全文
 采用电子束蒸发沉积技术制备了355nm Al2O3/MgF2 高反射薄膜,并在真空中进行不同温度梯度的退火,用X射线衍射(XRD)观察了薄膜微结构的变化,用355nm Nd:YAG脉冲激光测试了薄膜的激光损伤阈值,用Lambda 900光谱仪测试了薄膜的透过和反射光谱。结果表明在工艺条件相同的条件下真空退火过程对薄膜的性能有很大的影响,退火温度梯度越小的样品,吸收越小,阈值越大,并且是非晶结构。选择合适的真空退火过程可以减少355nm Al2O3/MgF2 高反射膜的膜层吸收,提高薄膜的激光损伤阈值。  相似文献   

11.
Ta2O5 films were deposited on BK7 substrates by e-beam evaporation with different deposition parameters such as substrate temperature (323-623 K), oxygen pressure (0.5-3.0×10−2 Pa) and deposition rate (0.2-0.5 nm/s). Absorption, scattering and chemical composition were investigated by surface thermal lensing (STL) technique, total integrated scattering (TIS) measurement and X-ray photoelectron spectroscopy (XPS), respectively. The laser-induced damage threshold (LIDT) was assessed using pulsed Nd:YAG 1064 nm laser at a pulse length of 12 ns. The results showed that optical properties, absorption and LIDT were influenced by the deposition parameters and annealing. However, scattering was little correlated with the deposition parameters. On the whole, the LIDT increased with increasing substrate temperature and oxygen pressure, whereas it increased firstly and then decreased upon increasing deposition rate. After annealing at 673 K for 12 h, the LIDT of films improved significantly. The dependence of possible damage mechanism on deposition parameters was discussed.  相似文献   

12.
LaF3 thin films were prepared by thermal boat evaporation at different substrate temperatures and various deposition rates. X-ray diffraction (XRD), Lambda 900 spectrophotometer and X-ray photoelectron spectroscopy (XPS) were employed to study crystal structure, transmittance and chemical composition of the coatings, respectively. Laser-induce damage threshold (LIDT) was determined by a tripled Nd:YAG laser system with a pulse width of 8 ns. It is found that the crystal structure became more perfect and the refractive index increased gradually with the temperature rising. The LIDT was comparatively high at high temperature. In the other hand, the crystallization status also became better and the refractive index increased when the deposition rate enhanced at a low level. If the rate was super rapid, the crystallization worsened instead and the refractive index would lessen greatly. On the whole, the LIDT decreased with increasing rate.  相似文献   

13.
 利用离子辅助电子束沉积方法在LiB3O5基底上镀制了不加SiO2内保护层和加SiO2内保护层的倍频增透膜,测量了两类薄膜在波长1 064 nm多脉冲辐照下的激光损伤阈值,获得了两种不同的损伤形貌,并对损伤原因作了初步探讨。实验结果表明:保护层的加入把由基底膜层界面缺陷吸收所决定的阈值改变到由HfO2膜层内缺陷吸收所决定的阈值,显著提高了倍频增透膜的抗激光损伤能力。  相似文献   

14.
HfO2 is one of the most important high refractive index materials for depositing high power optical mirrors. In this research, HfO2 thin films were prepared by dual-ion beam reactive sputtering method, and the laser-induced damage thresholds (LIDT) of the sample were measured in 1-on-1 mode for laser with 1064 nm wavelength. The results indicate that the LIDT of the as-grown sample is only 3.96 J/cm2, but it is increased to 8.98 J/cm2 after annealing under temperature of 200 °C in atmosphere. By measuring the laser weak absorption and SIMS of the samples, we deduced that substoichiometer is the main reason for the low LIDT of the as-grown sample, and the experiment results were well explained with the theory of electronic-avalanche ionization.  相似文献   

15.
Conventional HfO2/SiO2 and Al2O3/HfO2/SiO2 double stack high reflective (HR) coatings at 532 nm are deposited by electron beam evaporation onto BK7 substrates. The laser-induced damage threshold (LIDT) of two kinds of HR coatings is tested, showing that the laser damage resistance of the double stack HR coatings (16 J/cm2) is better than that of the conventional HR coatings (12.8 J/cm2). Besides, the optical properties, surface conditions, and damage morphologies of each group samples are characterized. The results show that laser damage resistance of conventional HR coatings is determined by absorptive defect, while nodular defect is responsible for the LIDT of double stack HR coatings.  相似文献   

16.
The influence of organic contamination in vacuum on the laser-induced damage threshold (LIDT) of coatings is studied. TiO2/SiO2 dielectric mirrors with high reflection at 1064 nm are deposited by the electron beam evaporation method. The LIDTs of mirrors are measured in vacuum and atmosphere, respectively. It is found that the contamination in vacuum is easily attracted to optical surfaces because of the low pressure and becomes the source of damage. LIDTs of mirrors have a little change in vacuum compared with in atmosphere when the organic contamination is wiped off. The results indicate that organic contamination is a significant reason to decrease the LIDT. N2 molecules in vacuum can reduce the influence of the organic contaminations and prtectect high reflectance coatings.  相似文献   

17.
For many applications, optical multimode fibers are used for the transmission of powerful laser radiation. High light throughput and damage resistance are desirable. Laser-induced breakdown at the end faces of fibers can limit their performance. Therefore, the determination of laser-induced damage thresholds (LIDT) at the surface of fibers is essential.Nanosecond (1064 nm and 532 nm wavelength) single-shot LIDT were measured according to the relevant standard on SiO2 glass preforms (Suprasil F300) as basic materials of the corresponding fibers. For 10 kinds of fused silica fibers (FiberTech) with core diameters between 180 μm and 600 μm, an illumination approach utilizing a stepwise increase of the laser fluence on a single spot was used. For both wavelengths, the LIDT values (0% damage probability) obtained by means of the two methods were compared. The influence of surface preparation (polishing) on damage resistance was investigated. For equal surface finishing, a correlation between drawing speed of the fibers and their surface LIDT values was found. In addition to the surface measurements, bulk LIDT were determined for the preform material.  相似文献   

18.
We investigate the influence of vacuum organic contaminations on laser-induced damage threshold (LIDT) of optical coatings. Anti-reflective (AIR) coatings at 1064 nm made by Ta2 O5/SiO2 are deposited by the ion beam sputtering method. The LIDTs of AR coatings are measured in vacuum and in atmosphere, respectively. It is exhibited that contaminations in vacuum are easily to be absorbed onto optical surface because of lower pressure, and they become origins of damage, resulting in the decrease of LIDT from 24.5J/cm^2 in air to 15.TJ/cm^2 in vacuum. The LIDT of coatings in vacuum has is slightly changed compared with the value in atmosphere after the organic contaminations are wiped off. These results indicate that organic contaminations are the main reason of the LIDT decrease in vacuum. Additionally, damage morphologies have distinct changes from vacuum to atmosphere because of the differences between the residual stress and thermal decomposability of filmy materials.  相似文献   

19.
 研究了超声清洗和激光预处理两种后处理手段对减反膜的损伤特性的影响。采用电子束蒸发技术制备了1 064 nm减反膜,利用超声清洗及激光预处理的方法分别对样品进行处理,并对处理前后的样品分别进行激光损伤阈值测试及破斑深度测量。结果表明:处理后减反膜的损伤阈值均有所提升,但激光预处理的阈值增强效果更加明显;超声清洗前后的破斑深度没有大的变化,而激光预处理后的破斑深度比处理前浅得多;原因在于超声清洗只能去除表面杂质,激光预处理可减少和抑制膜层内较深处的缺陷。  相似文献   

20.
The effect of λ/2 SiO2 overcoat on the laser damage characteristics of HfO2/SiO2 high-reflector (HR) coatings is investigated with 1-on-l and N-on-1 laser damage test methods. The laser damage surface of 1-on-l is analyzed by a step analyzer. The surface morphologies show that laser damage makes the coating damaged area protrudent and rough for HR coating without λ/2 silica overcoat, but concave and smooth for HR coating with A/2 silica overcoat. The result of 10-on-l multi-pulse irradiation on the same point of the coating shows that there is an energy density stage on the damage curve. If the laser energy density is within the range of the stage, HfO2/SiO2 HR coatings with λ/2 silica overcoat will not be damaged more than 2 times for multi-shots, and the surface damages are very slight so that there is no impact on the coating performance. Another interesting result is that the energy density stage extends from the damage threshold to the point of about 3 times of threshold, which is similar to the  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号