首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
陈立冰  路洪  金瑞博 《中国物理》2007,16(11):3204-3211
We present a systematic simple method to implement a generalized quantum control-NOT (CNOT) gate on two d-dimensional distributed systems. First, we show how the nonlocal generalized quantum CNOT gate can be implemented with unity fidelity and unity probability by using a maximally entangled pair of qudits as a quantum channel. We also put forward a scheme for probabilistically implementing the nonlocal operation with unity fidelity by employing a partially entangled qudit pair as a quantum channel. Analysis of the scheme indicates that the use of partially entangled quantum channel for implementing the nonlocal generalized quantum CNOT gate leads to the problem of 'the general optimal information extraction'. We also point out that the nonlocal generalized quantum CNOT gate can be used in the entanglement swapping between particles belonging to distant users in a communication network and distributed quantum computer.[第一段]  相似文献   

2.
We present an option of the experiment with a correlated pair of particles in the entangled state, which provides the effect of a change in the polarization for entangled photons, and demonstrate the reality of all different superposition states and the corresponding vector of the quantum system state; also we analyze possible consequences of this fact. We propose a quantum realism paradigm within the relational paradigm instead of the local realism concept disproved by the experiments on verifying the Bell inequalities. We analyze the results of experimental research of the Leggett inequality violation with respect to the verification of the adequacy of different kinds of nonlocal hidden variable theories and suggest a new way of their evaluation based on the study of the photon cross-correlation suppression after a beam splitter and preparation of quantum squeezed states. We show that the interpretation based on the nonlocal hidden variable theory is inconsistent.  相似文献   

3.
We propose a scheme for the implementation of nonlocal quantum swap operation on two spatially separated entangled pairs and we show that the operation can swap two qubits of these entangled pairs.We discuss the resources of the entangled qubits and classical communication bits required for the optimal implementation of the nonlocal quantum swap operation.We also put forward a scheme for probabilistic implementation of nonlocal swap operation via a nonmaximally entangled quantum channel.The probability of a successful nonlocal swap operation is obtained by introducing a collective unitary transformation.  相似文献   

4.
王光辉  颜雄硕  张金珂 《中国物理 B》2017,26(10):106802-106802
Resonant radiation force exerted on a semiconductor quantum well nanostructure(QWNS) from intersubband transition of electrons is investigated by taking the nonlocal coupling between the polarizability of electrons and applied optical fields into account for two kinds of polarized states. The numerical results show the spatial nonlocality of optical response can induce the spectral peak position of the exerted force to have a blueshift, which is sensitively dependent on the polarized state and the QWNS width. It is also demonstrated that resonant radiation force is controllable by the polarization and incident directions of applied light waves. This work provides effective methods for controlling optical force and manipulating nano-objects, and observing radiation forces in experiment. This nonlocal interaction mechanism can also be used to probe and predominate internal quantum properties of nanostructures, and to manipulate collective behavior of nano-objects.  相似文献   

5.
We investigate the local implementation of a nonlocal quantum Toffoli gate via partially entangled states. Firstly, we show how the nonlocal Toffoli gate can be implemented with unit fidelity and a certain probability by employing two partially entangled qubit pairs as quantum channels. The quantum circuit that does this proposed implementation is built entirely of local single-level and two-level gates if the target node harness a three-level qudit as a catalyser. This enables the construction of this key nonlocal quantum gate with existing technology. Then, we put forward a scheme to realize deterministic and exact implementation of this nonlocal gate via more partially entangled pairs. In this scheme, the control nodes’ local positive operator valued measurements (POVMs) lies at the heart. We construct the required POVMs. The fact that the deterministic and exact implementation of a nonlocal multi-qubit gate could be realized by using partially entangled qubit pairs and comparatively fewer resources cost is notable.  相似文献   

6.
金星日  张英俏  金哲  张寿 《中国物理》2005,14(10):1936-1941
We propose a scheme to realize the nonlocal quantum entanglement of three three-level particles by using a three-particle entangled state of three levels as a quantum channel with the aid of some local unitary transformations. This scheme can be directly generalized to the nonlocal quantum entanglement of N three-level particles.  相似文献   

7.
Entangled states provide the necessary tools for conceptual tests of quantum mechanics and other alternative theories. These tests include local hidden variables theories, pre- and postselective quantum mechanics, QND measurements, complementarity, and tests of quantum mechanics itself against, e.g., the so-called causal communication constraint. We show how to produce various nonlocal entangled states of multiple cavity fields that are useful for these tests, using cavity QED techniques. First, we discuss the generation of the Bell basis states in two entangled cavities, when there is at most one photon in either of the cavities, and then a straightforward generalization to similar N-cavity states. We then show how to produce a nonlocal entangled state when there is precisely one photon hiding in three cavities. These states can be produced by sending appropriately prepared atoms through the cavities. As applications we briefly review two proposals: one to test quantum mechanics against the causal communication constraint using a two-cavity entangled state and the other to test pre- and postselective quantum mechanics using a three-cavity entangled state. The outcome of the latter experiment can be discussed from the viewpoint of the consistent histories interpretation of quantum mechanics and therefore provides an opportunity to subject quantum cosmological ideas to laboratory tests. Finally, we point out the relation between these schemes and the schemes suggested for quantum computing, teleportation, and quantum copying.  相似文献   

8.
Two nonlocal and unknown pure qubit states can, with a certain probability of success, be discriminated unambiguously with the aid of local operations, classical communication, and shared entanglements (LOCCSE). We present a scheme for such kind of nonlocal unambiguous quantum state discrimination. This scheme consists of a nonlocal positive operator valued measurement (POVM). This nonlocal POVM can be realized by performing nonlocal unitary operations on initial system and ancillary qubits, and local von Neumann projective measurements on the ancilla plus initial system. By utilizing the degrees of freedom of the original system Hilbert space, we need far more simpler operations than those required by the original Neumark approach. We construct a quantum logic network to implement the required nonlocal POVM.  相似文献   

9.
To relax the apparent tension between nonlocal hidden variables and relativity, we propose that the observable proper time is not the same quantity as the usual proper-time parameter appearing in local relativistic equations. Instead, the two proper times are related by a nonlocal rescaling parameter proportional to |ψ|2, so that they coincide in the classical limit. In this way particle trajectories may obey local relativistic equations of motion in a manner consistent with the appearance of nonlocal quantum correlations. To illustrate the main idea, we first present two simple toy models of local particle trajectories with nonlocal time, which reproduce some nonlocal quantum phenomena. After that, we present a realistic theory with a capacity to reproduce all predictions of quantum theory.  相似文献   

10.
Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also, some models based on nonlocal variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite number of measurement settings, and which therefore allow testing Leggett's nonlocal model versus quantum physics. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.  相似文献   

11.
Quantum Locality     
It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.  相似文献   

12.
Recent experiments have renewed interest in nonlocal interpretations of quantum mechanics. The experimental observation of the violation of Bell's inequalities implies the existence of nonlocality. Bohm expressed the nonlocal connection between quantum particles through the wave function and the quantum potential. This paper shows that a similar connection exists in a relativistic dynamical theory known as parametrized relativistic quantum theory (PRQT). We present an introduction to PRQT, derive the quantum potential for a system of relativistic scalar particles, and discuss alternative interpretations of nonlocality.  相似文献   

13.
In this paper we present a series of computer calculations carried out in order to demonstrate exactly how the de Broglie-Bohm interpretation works for two-particle quantum mechanics. In particular, we show how the de Broglie-Bohm interpretation can account for the essential features of nonrelativistic, two-particle quantum mechanics in terms of well-defined, correlated, individual particle trajectories and spin vectors. We demonstrate exactly how both quantum statistics and the correlations observed in Einstein-Podolsky-Rosen experiments can be explained in terms of nonlocal quantum potentials and nonlocal quantum torques which act on the well-defined individual particle coordinates and spin vectors.  相似文献   

14.
We present two different hyperentanglement concentration protocols (hyper-ECPs) for two-photon systems in nonlocal polarization-time-bin hyperentangled states with known parameters, including Bell-like and cluster-like states, resorting to the parameter splitting method. They require only one of two parties in quantum communication to operate her photon in the process of entanglement concentration, not two, and they have the maximal success probability. They work with linear optical elements and have good feasibility in experiment, especially in the case that there are a big number of quantum data exchanged as the parties can obtain the information about the parameters of the nonlocal hyperentangled states by sampling a subset of nonlocal hyperentangled two-photon systems and measuring them. As the quantum state of photons in the time-bin degree of freedom suffers from less noise in an optical-fiber channel, these hyper-ECPs may have good applications in practical long-distance quantum communication in the future.  相似文献   

15.
Ji-Hui Zheng 《中国物理 B》2022,31(5):54204-054204
A nonlocal circulator protocol is proposed in a hybrid optomechanical system. By analogy with quantum communication, using the input-output relationship, we establish the quantum channel between two optical modes with long-range. The three-body nonlocal interaction between the cavity and the two oscillators is obtained by eliminating the optomechanical cavity mode and verifying the Bell-CHSH inequality of continuous variables. By introducing the phase accumulation between cyclic interactions, the unidirectional transmission of quantum state between the optical mode and two mechanical modes is achieved. The results show that nonreciprocal transmissions are achieved as long as the accumulated phase reaches a certain value. In addition, the effective interaction parameters in our system are amplified, which reduces the difficulty of the implementation of our protocol. Our research can provide potential applications for nonlocal manipulation and transmission control of quantum platforms.  相似文献   

16.
It was shown by Bell that no local hidden variable model is compatible with quantum mechanics. If, instead, one permits the hidden variables to be entirely nonlocal, then any quantum mechanical predictions can be recovered. In this Letter, we consider general hidden variable models which can have both local and nonlocal parts. We show the existence of (experimentally verifiable) quantum correlations that are incompatible with any hidden variable model having a nontrivial local part, such as the model proposed by Leggett.  相似文献   

17.
《Physics letters. A》2020,384(16):126323
It is shown that Popescu-Rohrlich nonlocal boxes (beating the Tsirelson bound for Bell inequality) do exist in the existing structures of both quantum and classical theory. In particular, we design an explicit example of measure-and-prepare nonlocal (but no-signaling) channel being the realization of nonlocal and no-signaling Popescu-Rohrlich box within the generalized probabilistic theory of processes. Further we present a post-selection-based spatially non-local implementation and show it does not require truly quantum resources, hence, improving the previously known results. Interpretation and potential (spatially non-local) simulation of this form of process nonlocality and the protocol is discussed.  相似文献   

18.
The Josephson current of spin-entangled electrons through the two branches of a SQUID-like structure with two quantum dots exhibits a magnetic-flux response different from the conventional Josephson current. Because of their interference, the period of maximum Josephson current changes from h/2e to h/e, which can be used for detecting the Cooper-pair splitting efficiency. The nonlocal spin entanglement provides a quantum mechanical functionale for switching on and off this novel Josephson current, and explicitly a switch is formulated by including a pilot junction. It is shown that the device can be used to measure the magnitude of split-tunneling Josephson current.  相似文献   

19.
We present a detail study of the evolution of nonlocal correlations of an interacting quantum system comprising a three-level atom and a field mode initially prepared in a squeezed vacuum state with added photons. We compare the dynamical behavior of the quantum phase and entanglement by varying the number of photons added to the squeezed vacuum state. Furthermore, we examine the influence of the added-photon number and the squeeze parameter on the dynamical behavior of entanglement, quantum phase, and nonclassical properties of the field. Moreover, we explore the link between the quantum phase and the nonlocal correlation. Finally, we introduce an effective method to generate and maintain a high level of entanglement for this quantum system based on precise parameter ranges.  相似文献   

20.
We propose a protocol to implement the nonlocal Bell-state measurement, which is nearly determinate with the help of weak cross-Kerr nonlinearities and quantum non-destructive photon number resolving detection. Based on the nonlocal Bell-state measurement, we implement the quantum information transfer from one place to another. The process is different from conventional teleportation but can be regarded as a novel form of teleportation without entangled channel and classic communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号