首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
肖佳  徐大海  伊珍  谷文举 《物理学报》2016,65(12):124202-124202
本文主要研究了利用传输矩阵理论和共振透射条件详细地推导光腔中均匀放置三个机械薄膜构成的腔光力系统中系统本征模式随机械运动的色散关系.计算结果发现系统的光学本征模式由一组四个的本征能级构成,且不同的能级随不同的机械运动模式的变化曲线各不相同,进而导致不同光学模式与不同机械运动模式之间的耦合也不相同.此外,利用微扰理论求解了当机械运动振幅远小于腔模波长、机械振子处于平衡位置附近时,各种光学模式与不同机械振动模式间相互作用耦合强度的解析表达式.研究结果能够为理论和实验上研究多模腔光力系统提供一定的参考.  相似文献   

2.
The dynamics of a microresonator in detuned whispering-gallery modes (WGM) cavity opto-mechanical system are investigated by the quantum Langevin equation. A WGM cavity coupling to two parallel waveguides is devised to study the transmission and reflection of this system. In single mode WGM cavity, without optomechanical coupling, both the transmission and reflection of the cavity present a Lorentzian dip and peak. When the coupling between the cavity mode and mechanical mode is considered, the transmission and reflection of the optomechanical cavity show “W” and “M” shape mode splitting. Moreover, under the action of a controlling and a probe laser, the output field at the probe frequency presents electromagnetically induced transparency (EIT)-like spectrum in the system. We give the physical origin of EIT-like and the pump-probe response for the WGM shares all the features of the Λ system in atoms. Further, due to backscattering, the two traveling waves in WGM are coupled with a rate γ. The transmission and reflection of the optomechanical cavity display three modes splitting in the spectra with optomechanical coupling between the two cavity modes and the mechanical mode.  相似文献   

3.
This study highlights the theoretical investigation of quantum coherence in mechanical oscillators and its transfer between the cavity and mechanical modes of an optomechanical system comprising an optical cavity and two mechanical oscillators that,in this study, were simultaneously coupled to the optical cavity at different optomechanical coupling strengths. The quantum coherence transfer between the optical and mechanical modes is found to depend strongly on the relative magnitude of the two optomechanical couplings. The laser power, decay rates of the cavity and mechanical oscillators, environmental temperature, and frequency of the mechanical oscillator are observed to significantly influence the investigated quantum coherences. Moreover,quantum coherence generation in the optomechanical system is restricted by the system's stability condition, which helps sustain high and stable quantum coherence in the optomechanical system.  相似文献   

4.
王婧 《中国物理 B》2020,(3):245-250
We propose a scheme for realizing the optical nonreciprocal response based a four-mode optomechanical system,consisting of two charged mechanical modes and two linearly coupled optical modes. Two charged mechanical modes are coupled by Coulomb interaction, and two optical modes are coupled to one of mechanical modes by radiation pressure. We numerically evaluate the transmission probability of the probe field to obtain the optimum optical nonreciprocal response parameters. Also, we show that the optical nonreciprocal response is caused by the quantum interference between the optomechanical couplings and the linearly coupled interaction that breaks the time-reversal symmetry.  相似文献   

5.
Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology. Here, we study perfect optical nonreciprocity in a three-mode optomechanical system with mechanical driving.The scheme relies on the interference between optomechanical interaction and mechanical driving. We find perfect optical nonreciprocity can be achieved even though nonreciprocal phase difference is zero if we drive the system by a mechanical driving with a nonzero phase. We obtain the essential conditions for perfectoptical nonreciprocity and analyze properties of the optical nonreciprocal transmission. These results can be used to control optical transmission in quantum information processing.   相似文献   

6.
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime.We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su-Schrieffer Heeger(SSH)model via designing the effective optomechanical coupling.Especially,the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the opto mechanical coupling.We stress that the to pological phase transition is mainly induced by the decay of the cavity field,which is counter-intuitive since the dissipation is usually detrimental to the system.Also,we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice.We find that the quantum st ate transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields.Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.  相似文献   

7.
Yuan-Yuan Liu 《中国物理 B》2022,31(9):94203-094203
We investigate the quantum entanglement in a double-cavity optomechanical system consisting of an optomechanical cavity and an auxiliary cavity, where the optomechanical cavity mode couples with the mechanical mode via radiation-pressure interaction, and simultaneously couples with the auxiliary cavity mode via nonreciprocal coupling. We study the entanglement between the mechanical oscillator and the cavity modes when the two cavities are reciprocally or nonreciprocally coupled. The logarithmic negativity $E_{n}^{(1)}$ ($E_{n}^{(2)}$) is adopted to describe the entanglement degree between the mechanical mode and the optomechanical cavity mode (the auxiliary cavity mode). We find that both $E_{n}^{(1)}$ and $E_{n}^{(2)}$ have maximum values in the case of reciprocal coupling. By using nonreciprocal coupling, $E_{n}^{(1)}$ and $E_{n}^{(2)}$ can exceed those maximum values, and a wider detuning region where the entanglement exists can be obtained. Moreover, the entanglement robustness with respect to the environment temperature is also effectively enhanced.  相似文献   

8.
陈华俊  米贤武 《中国物理 B》2011,20(12):124203-124203
Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya-Perot optical cavity via radiation-pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity.  相似文献   

9.
Heng-Mei Li 《中国物理 B》2023,32(1):14202-014202
A scheme is proposed to investigate the non-classical states generated by a quantum scissors device (QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters (BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t=2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function (WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t=2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.  相似文献   

10.
《中国物理 B》2021,30(9):94205-094205
We theoretically explore the tunability of optomechanically induced transparency(OMIT) phenomenon and fast–slow light effect in a loop-coupled hybrid optomechanical system in which two optical modes are coupled to a common mechanical mode. In the probe output spectrum, we find that the interference phenomena OMIT caused by the optomechanical interactions and the normal mode splitting(NMS) induced by the strong tunnel coupling between the cavities can be observed. We further observe that the tunnel interaction will affect the distance and the heights of the sideband absorption peaks. The results also show that the switch from absorption to amplification can be realized by tuning the driving strength because of the existence of stability condition. Except from modulating the tunnel interaction, the conversion between slow light and fast light also can be achieved by adjusting the optomechanical interaction in the output field. This study may provide a potential application in the fields of high precision measurement and quantum information processing.  相似文献   

11.
Cavity optomechanics represents a flexible platform for the implementation of quantum technologies, useful in particular for the realization of quantum interfaces, quantum sensors and quantum information processing. However, the dispersive, radiation–pressure interaction between the mechanical and the electromagnetic modes is typically very weak, harnessing up to now the demonstration of interesting nonlinear dynamics and quantum control at the single photon level. It has already been shown both theoretically and experimentally that if the interaction is mediated by a Josephson circuit, one can have an effective dynamics corresponding to a huge enhancement of the single-photon optomechanical coupling. Here we analyze in detail this phenomenon in the general case when the cavity mode and the mechanical mode interact via an off-resonant qubit. Using a Schrieffer–Wolff approximation treatment, we determine the regime where this tripartite hybrid system behaves as an effective cavity optomechanical system in the strong coupling regime.  相似文献   

12.
We theoretically present a scheme for nonreciprocal ground-state cooling in a double-cavity spinning optomechanical system which is consisted of an optomechanical resonator and a spinning optical harmonic resonator with directional driving. The optical Sagnac effect generated by the whispering-gallery cavity (WGC) rotation creates frequency difference between the WGC mode, we found that the mechanical resonator (MR) can be cooled to the ground state when the propagation direction of driving light is opposite to the spin direction of the WGC, but not from the other side, vice versa, so that the nonreciprocal cooling is achieved. By appropriately selecting the system parameters, the heating process can be completely suppressed due to the quantum interference effect. The proposed approach provides a platform for quantum manipulation of macroscopic mechanical devices beyond the resolved sideband limit.  相似文献   

13.
Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology. Here, we propose to take advantage of the interference between optomechanical interaction and linearly-coupled interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system. Particularly, we have derived essential conditions for perfect optical nonreciprocity and analysed properties of the optical nonreciprocal transmission. These results can be used to control optical transmission in quantum information processing.  相似文献   

14.
米贤武  柏江湘  李德俊 《中国物理 B》2012,21(3):30303-030303
The dynamics of the optomechanical entanglement between optical cavity field modes and a macroscopic mechanical breathing mode in a whispering-gallery cavity as well as the continuous variable entanglement between the phase-quadrature amplitudes of the two whispering-gallery modes have been analysed. Simulated results indicate that under state-of-the-art experimental conditions, optomechanical entanglement is obvious and can occur even at temperatures of above 40 K. Compared with the entanglement of the mechanical oscillator at the ground state temperature, optomechanical entanglement is more intense by several orders of magnitude.  相似文献   

15.
The dynamics of the optomechanical entanglement between optical cavity field modes and a macroscopic mechanical breathing mode in a whispering-gallery cavity as well as the continuous variable entanglement between the phase-quadrature amplitudes of the two whispering-gallery modes have been analysed.Simulated results indicate that under state-of-the-art experimental conditions,optomechanical entanglement is obvious and can occur even at temperatures of above 40 K.Compared with the entanglement of the mechanical oscillator at the ground state temperature,optomechanical entanglement is more intense by several orders of magnitude.  相似文献   

16.
The study of optomechanical systems has attracted much attention, most of which are concentrated in the physics in the smallamplitude regime. While in this article, we focus on optomechanics in the extremely-large-amplitude regime and consider both classical and quantum dynamics. Firstly, we study classical dynamics in a membrane-in-the-middle optomechanical system in which a partially reflecting and flexible membrane is suspended inside an optical cavity. We show that the membrane can present self-sustained oscillations with limit cycles in the shape of sawtooth-edged ellipses and exhibit dynamical multistability. Then, we study the dynamics of the quantum fluctuations around the classical orbits. By using the logarithmic negativity, we calculate the evolution of the quantum entanglement between the optical cavity mode and the membrane during the mechanical oscillation. We show that there is some synchronism between the classical dynamical process and the evolution of the quantum entanglement.  相似文献   

17.
Optomechanical coupling between a mechanical oscillator and light trapped in a cavity increases when the coupling takes place in a reduced volume. Here we demonstrate a GaAs semiconductor optomechanical disk system where both optical and mechanical energy can be confined in a subwavelength scale interaction volume. We observe a giant optomechanical coupling rate up to 100 GHz/nm involving picogram mass mechanical modes with a frequency between 100 MHz and 1 GHz. The mechanical modes are singled-out measuring their dispersion as a function of disk geometry. Their Brownian motion is optically resolved with a sensitivity of 10(-17) m/√Hz] at room temperature and pressure, approaching the quantum limit imprecision.  相似文献   

18.
We propose a technique aimed at cooling a harmonically oscillating mirror mechanically coupled to another vibrating mirror to its quantum mechanical ground state. Our method involves optomechanical coupling between two optical cavities. We show that the cooling can be controlled by the mechanical coupling strength between the two movable mirrors, the phase difference between the mechanical modes of the two oscillating mirrors and the photon number in each cavity. We also show that both mechanical and optical cooling can be achieved by transferring energy from one cavity to the other. We also analyze the occurrence of normal-mode splitting (NMS). We find that a hybridization of the two oscillating mirrors with the fluctuations of the two driving optical fields occurs and leads to a splitting of the mechanical and optical fluctuation spectra.  相似文献   

19.
陈雪  刘晓威  张可烨  袁春华  张卫平 《物理学报》2015,64(16):164211-164211
腔光力学系统近年来迅猛发展, 在精密测量、量子传感等方面已展现出重要的应用价值. 特别是与微纳技术和冷原子技术结合后, 这一系统正发展成为研究量子测量与量子操控的理想平台. 本文首先综述腔光力学在量子测量, 尤其是量子测量基础理论研究方面的进展; 然后分析腔光力学系统中的量子测量原理; 最后介绍我们近来在这方面的研究进展, 并通过我们设计的一系列新颖的基于腔光力学系统的量子测量方案来具体展示该系统在量子测量、量子操控等方面的潜在应用.  相似文献   

20.
Optomechanics describes the interconnection between the terahertz optical field and mechanical microwave field, making it appealing in the context of nanophotonics and quantum information science. Here, the optomechanically induced mode transition and spectrum enhanced phenomenon in an optomechanical microcavity system are studied. An optical filter that is limited by the bandwidth of the mechanical mode is built. The analytical model is presented by considering a microresonator system which supports two electromagnetic modes and a single mechanical mode. Through the filtering of mechanical resonator, the optical spectral width becomes similar to the mechanical resonator bandwidth which can go beyond the limit of the cavity quality factor. It is found that the transition between the optomechanically induced transparency and the optomechanically induced absorption can be observed by tuning the coupling between the microresonator and the waveguide. Moreover, the controllable nonreciprocal excitation of the system can also be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号