首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new approach to fabricating high-quality AlInGaN film as a lattice-matched barrier layer in multiple quantum wells(MQWs) is presented. The high-quality AlInGaN film is realized by growing the AlGaN/InGaN short period superlattices through metalorganic chemical vapor deposition, and then being used as a barrier in the MQWs. The crystalline quality of the MQWs with the lattice-matched AlInGaN barrier and that of the conventional InGaN/GaN MQWs are characterized by x-ray diffraction and scanning electron microscopy. The photoluminescence(PL) properties of the InGaN/AlInGa N MQWs are investigated by varying the excitation power density and temperature through comparing with those of the InGaN/GaN MQWs. The integral PL intensity of InGaN/AlInGaN MQWs is over 3 times higher than that of InGaN/GaN MQWs at room temperature under the highest excitation power. Temperature-dependent PL further demonstrates that the internal quantum efficiency of InGaN/AlInGaN MQWs(76.1%) is much higher than that of InGaN/GaN MQWs(21%).The improved luminescence performance of InGaN/AlInGaN MQWs can be attributed to the distinct reduction of the barrier-well lattice mismatch and the strain-induced non-radiative recombination centers.  相似文献   

2.
The influences of InGaN/GaN multiple quantum wells(MQWs) and AlGaN electron-blocking layers(EBL) on the performance of GaN-based violet laser diodes are investigated. Compared with the InGaN/GaN MQWs grown at two different temperatures, the same-temperature growth of InGaN well and GaN barrier layers has a positive effect on the threshold current and slope efficiency of laser diodes, indicating that the quality of MQWs is improved. In addition, the performance of GaN laser diodes could be further improved by increasing Al content in the AlGaN EBL due to the fact that the electron leakage current could be reduced by properly increasing the barrier height of AlGaN EBL. The violet laser diode with a peak output power of 20 W is obtained.  相似文献   

3.
利用Advanced Physical Models of Semiconductor Devices (APSYS)理论对比研究了InGaN/AlInGaN 和 InGaN/GaN多量子阱作为有源层的InGaN基发光二极管的结构和电学特性。与InGaN/GaN 基LED 中GaN作为垒层材料相比,在AlInGaN材料体系中,通过调节AlInGaN中Al和In的组分可以优化器件的性能。当InGaN阱层材料中In组分为8%时,可以实现无应力的In0.08Ga0.92N/AlInGaN基 LED。在这种无应力结构中可以进一步降低大功率LED的"效率下降"(Effciency droop)问题。理论模拟结果显示,四元系AlInGaN作为垒层可以进一步减少载流子泄露,增加空穴注入效率,减少极化场对器件性能的影响。在In0.08Ga0.92N /AlInGaN量子阱中的载流子浓度、有源层的辐射复合率、电流特性曲线和内量子效率等方面都优于InGaN/GaN基LED。无应变AlInGaN垒层代替传统的GaN垒层后,能够得到高效的发光二极管,并且大电流注入下的"效率滚降"问题得到改善。  相似文献   

4.
在(0001)蓝宝石衬底上分别用金属有机化学气相沉积技术外延生长了InGaN/GaN, InGaN/InGaN, InGaN/AlInGaN多量子阱激光器结构, 并分别制作了脊形波导GaN基激光器。同步辐射X射线衍射,电注入受激发射光谱测试及光功率-电流(L-I)测试证明,相对于GaN垒材料,InGaN垒材料,AlInGaN四元合金垒材料更能改善多量子阱的晶体质量,提高量子阱的量子效率及降低激光器阈值电流。相关的机制为:组分调节合适的四元合金垒层中Al的掺入使得量子阱势垒高度增加,阱区收集载流子的能力增强;In的掺入能更多地补偿应力,减少了由于缺陷和位错所产生的非辐射复合中心密度;In的掺入还减小了量子阱中应力引致的压电场,电子空穴波函数空间交叠得以加强,使得辐射复合增加。  相似文献   

5.
许恒  闫龙  李玲  张源涛  张宝林 《发光学报》2017,38(3):324-330
Ag纳米粒子的形貌对InGaN/Ga N多量子阱(MQWs)的光致发光(PL)效率有着显著影响。本文采用离子束沉积(IBD)技术将Ag沉积在InGaN/Ga N MQWs上,然后通过快速热退火处理制备Ag纳米粒子。通过改变Ag的沉积时间获得了具有不同Ag纳米粒子形貌的样品。用原子力显微镜对各样品的Ag纳米粒子形貌和尺寸进行了表征,并且测试了吸收谱、室温和变温PL谱及时间分辨光致发光(TRPL)谱。结果表明:随着Ag沉积时间的延长,所得Ag纳米粒子粒径增大,粒子纵横比先增大后减小且吸收谱峰红移。由于不同形貌的Ag纳米粒子在入射光作用下产生的局域表面等离激元(LSPs)与MQWs中激子耦合强度不同,光发射能力也不同,与没有Ag纳米粒子的样品相比,沉积时间为15 s的样品室温PL积分强度被抑制6.74倍,沉积时间为25 s和35 s的样品室温PL积分强度分别增强1.55和1.72倍且峰位发生红移,沉积时间为45 s的样品室温PL积分强度基本没有变化。TRPL与变温PL的测试结果证明,室温PL积分强度的改变是由于LSPs与MQWs中的激子耦合作用引起的。纵横比大且吸收谱与MQWs的PL谱交叠大的Ag纳米粒子能够更好地增强InGaN/Ga N MQWs的发光。  相似文献   

6.
Growths of blue and green multi-quantum wells (MQWs) and light-emitting diodes (LEDs) are realized on lateral epitaxial overgrowth (LEO) GaN, and compared with identical structures grown on conventional GaN. Atomic force microscopy is used to confirm the significant reduction of dislocations in the wing region of our LEO samples before active-region growth. Differences between surface morphologies of blue and green MQWs are analyzed. These MQWs are integrated into LEDs. All devices show a blue shift in the electroluminescence (EL) peak and narrowing in EL spectra with increasing injection current, both characteristics attributed to the band-gap renormalization. Green LEDs show a larger EL peak shift and a broader EL spectrum due to larger piezoelectric field and more indium segregation in the MQWs, respectively. Blue LEDs on LEO GaN show a higher performance than those on conventional GaN; however, no performance difference is observed for green LEDs on LEO GaN versus conventional GaN. The performance of the green LEDs is shown to be primarily limited by the active layer growth quality.  相似文献   

7.
黎斌  黄善津  王海龙  吴华龙  吴志盛  王钢  江灏 《中国物理 B》2017,26(8):87307-087307
The performance of an InGaN/GaN multiple quantum well(MQW) based visible-light Schottky photodiode(PD)is improved by optimizing the source flow of TEGa during In Ga N QW growth. The samples with five-pair InGaN/GaN MQWs are grown on sapphire substrates by metal organic chemical vapor deposition. From the fabricated Schottky-barrier PDs, it is found that the smaller the TEGa flow, the lower the reverse-bias leakage is. The photocurrent can also be enhanced by depositing the In GaN QWs with using lower TEGa flow. A high responsivity of 1.94 A/W is obtained at 470 nm and -3-V bias in the PD grown with optimized TEGa flow. Analysis results show that the lower TEGa flow used for depositing In Ga N may lead to superior crystalline quality with improved InGaN/GaN interface, and less structural defects related non-radiative recombination centers formed in the MQWs.  相似文献   

8.
金属有机化学气相沉积(MOCVD)方法制备InGaN/GaN多量子阱结构时,在GaN势垒层生长的N2载气中引入适量H2,能够有效改善阱/垒界面质量从而提升发光效率。本工作利用光致发光(PL)光谱技术,对蓝光激光器结构中的InGaN/GaN多量子阱的发光性能进行了精细的光谱学测量与表征,研究了通H2生长对量子阱界面的调控效应及其发光效率提升的物理机制。室温PL光谱结果显示,GaN势垒层生长载气中引入2.5%的H2使InGaN/GaN多量子阱的发光效率提升了75%、发光峰的峰位蓝移了17 meV、半峰宽(FWHM)减小了10 meV。通过功率依赖的PL光谱特征分析,我们对InGaN/GaN量子阱中的量子限制Stark效应(QCSE)和能带填充(Band Filling)效应进行了清晰的辨析,发现了发光峰峰位和峰宽的光谱特征主要受QCSE效应影响,H2的引入能够大幅度降低QCSE效应,并且确定了QCSE效应被完全屏蔽情况下的发光峰能量为2.75 eV。温度依赖的PL光谱数据揭示了通H2生长量子阱结构中显著减弱的载流子局域化行为,显示界面质量提高有效降低了限制势垒的能量波动,从而导致更窄的发光峰半峰宽。PL光谱强度随温度的变化规律表明,通H2生长并不改变量子阱界面处的非辐射复合中心的物理本质,却能够显著减少非辐射复合中心的密度,有助于提升量子阱的发光效率。通过时间分辨PL光谱分析,发现通H2生长会导致量子阱结构中更短的载流子辐射复合寿命,但不影响非辐射复合寿命。载流子复合寿命的变化特征进一步确认了通H2生长对量子阱结构中QCSE效应和非辐射复合中心的影响规律。综合所有PL光谱分析结果,我们发现通H2生长能够提高InGaN/GaN多量子阱的界面质量、显著减弱应力效应(更弱的QCSE效应)、降低限制势垒的能量波动以及减少界面处非辐射复合中心的密度,从而显著提升量子阱的发光效率。该研究工作充分显示了PL光谱技术对半导体量子结构发光性能的精细表征能力,光谱分析结果能够为InGaN/GaN多量子阱生长提供有价值的参考。  相似文献   

9.
Pressure dependence of physical properties of GaN/AlN multi-quantum wells (MQWs) was investigated using ab intio calculations. The influence of pressure was divided into two main contributions: pressure affecting the properties of GaN and AlN bulk semiconductors and an influence on systems of polar quantum wells deposited on various substrates. An influence of hydrostatic, uniaxial, and tetragonal strain on the crystallographic structure, polarization (piezoelectricity), and the bandgap of the bulk systems is assessed using ab initio calculations. It was shown that when a partial relaxation of the structure is assumed, the tetragonal strain may explain an experimentally observed reduction of pressure coefficients for polar GaN/AlN MQWs. The MQWs were also simulated directly using density functional theory (DFT) calculations. A comparison of these two approaches confirmed that nonlinear effects induced by the tetragonal strain related to lattice mismatch between the substrates and the polar MQWs systems are responsible for a drastic decrease of the pressure coefficients of photoluminescence (PL) energy experimentally observed in polar GaN/AlGaN MQWs.  相似文献   

10.
We report the results from detailed optical spectroscopy from MOCVD grown GaN/AlGaN multiple quantum wells (MQWs), as opposed to most previous studies where MBE was employed by means of photoluminescence (PL) technique. In this paper we will present theoretical and experimental results demonstrating how polarization induced electric fields and bound interface charges in GaN/AlGaN MQWs affect the emission peak energy, PL line shape, as well as the emission line width. Theoretically estimated fields in this work are consistent with experimental data. Transition energy of the heavy hole and electron ground state Ee-hh in GaN/AlGaN MQWs were calculated and it is found that it stays in good agreement with the experimental data.  相似文献   

11.
在以自组织Ni纳米岛为掩膜制作的n-GaN纳米柱上,利用MOCVD方法外延生长了具有折叠InGaN/GaN多量子阱(MQW)的LED结构外延片,进而制作了LED器件.外延片上中下游的光致荧光测试,结果表明外延片具有很好的均匀性.用该外延片制作的LED的电致发光谱,随注入电流增加没有明显蓝移,这表明纳米结构能更好地释放应力,纳米柱上外延生长的多量子阱,具有较低的压电极化电场.正向工作电流20 mA时,LED器件的工作电压为4.6 V. 关键词: 纳米柱LED 光致发光 电致发光  相似文献   

12.
In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.  相似文献   

13.
采用金属有机化学气相沉积(MOCVD)技术以蓝宝石为衬底在n型GaN单晶层上生长了InGaN/GaN多量子阱结构外延薄膜,利用高分辨X射线衍射(HRXRD),卢瑟福背散射/沟道(RBS/channeling),以及光致发光(PL)技术对InGaN/GaN多量子阱结构薄膜分别进行了平均晶格常数计算、In原子替位率计算和In组分的定量分析.研究表明:InGaN/GaN多量子阱的水平和垂直方向平均晶格常数分别为aepi=0.3195nm,cepi=0.5198nm,In原子的替位率为99.3%,利用HRXRD和RBS/channeling两种分析技术计算In的组分分别是0.023和0.026,并与样品生长时设定的预期目标相符合,验证了两种实验方法的准确性;而用室温条件下的光致发光谱(PL)来计算InGaN/GaN多量子阱中In的组分是与HRXRD和RBS/channeling的实验结果相差很大,说明用PL测试In组分的方法是不适宜的. 关键词: InGaN/GaN多量子阱 高分辨X射线衍射 卢瑟福背散射/沟道 光致发光  相似文献   

14.
为了制备单芯片无荧光粉白光InGaN/GaN多量子阱发光结构,利用选择性外延生长法在SiO2条纹掩膜板上生长出具有梯形形貌的GaN微面结构,并在该GaN微面结构上生长InGaN/GaN多量子阱结构,最终在单芯片上获得了双波长发光.结果表明:梯形GaN微面由(0001)和(11-22)面组成,两者的表面能和极性不同,并且在InGaN/GaN多量子阱生长过程中,In原子和Ga原子迁移速率不同,从而使得(0001)和(11-22)面上的多量子阱具有不同的发光波长;该性质可以使(11-22)面的微面量子阱发出蓝光(峰值波长为420nm),而(0001)面的量子阱发出黄光(峰值波长为525nm),最终形成双波长的复合白光外延结构.  相似文献   

15.
张纪才  王建峰  王玉田  杨辉 《物理学报》2004,53(8):2467-2471
利用x射线三轴晶衍射和光致发光谱研究了生长参数In源流量与Ⅲ族流量之比对InGaN/GaN多量子阱结构缺陷(如位错密度和界面粗糙度)和光致发光的影响.通过对(0002)对称和(1012)非对称联动扫描的每一个卫星峰的ω扫描,分别测量出了多量子阱的螺位错和刃位错平均密度,而界面粗糙度则由(0002)对称衍射的卫星峰半高全宽随级数的变化得出.试验发现多量子阱中的位错密度特别是刃位错密度和界面粗糙度随In源流量与Ⅲ族源流量比值的增加而增加,导致室温下光致发光性质的降低,从而也证明了刃位错在InGaN/GaN 关键词: x射线三轴晶衍射 界面粗糙度 位错 InGaN/GaN多量子阱  相似文献   

16.
Using near-field scanning optical microscopy (NSOM), we report the spatial distribution of photoluminescence (PL) intensity in III-nitride-based semiconductor layers grown on GaN substrates. Undoped GaN, In0.11Ga0.89N, and In0.13Ga0.87N/GaN multi-quantum wells (MQWs) were grown by metal organic chemical vapor deposition (MOCVD) on freestanding GaN substrates. Micro-Raman spectroscopy has been used to evaluate the crystalline properties of the GaN homoepitaxial layers. The variation of the PL intensity from the NSOM imaging indicates that the external PL efficiency fluctuates from 20% to 40% in the 200 nm InGaN single layer on freestanding GaN, whereas it fluctuates from 20% to 60% in InGaN/GaN MQWs. In the NSOM-PL images, bright island-like features are observed. After deconvolution with the spatial resolution of the NSOM, the size of these features is estimated to be in the range of 150–250 nm.  相似文献   

17.
We investigated the carrier transition properties of the GaN/InGaN/GaN single quantum well bounded by AlGaN barriers. In order to confirm the carrier transition coming from the single quantum well, the single quantum well layer was etched by reactive ion etching method. The structural property of the samples was characterized by high resolution X-ray diffraction measurements. In micro-photoluminescence measurements, it is clearly shown that the donor bound exciton transition of the single quantum well sample was redshifted compared to the etched one due to strain. Moreover, a lot of peaks were observed below the GaN band gap energy due to carrier localization in the InGaN/GaN single quantum well, including carrier localization center and quantum confined states. The excitation power dependence and time resolved photoluminescence spectra were investigated to characterize the optical transition of the single quantum well.  相似文献   

18.
The performance characteristics of deep violet In0.082Ga0.918N/GaN double quantum well (DQW) laser diodes (LDs) with different electron blocking layer (EBL) including a ternary AlGaN bulk EBL, a quaternary AlInGaN bulk EBL and ternary AlGaN multi quantum barrier (MQB) EBL has been numerically investigated. Inspired by the abovementioned structures, a new LD structure with a quaternary AlInGaN MQB EBL has been proposed to improve the performance characteristics of the deep violet InGaN DQW LDs. Simulation results indicated that the LD structure with the quaternary AlInGaN MQB EBL present the highest output power, slope efficiency and differential quantum efficiency (DQE) and lowest threshold current compared with the above mentioned structures. They also indicated that choosing an appropriate aluminum (Al) and indium (In) composition in the quaternary AlInGaN MQB layers could control both piezoelectric and spontaneous polarizations. It will decrease the electron overflow from the active region to p-side and increased the contribution of electron and hole carriers to the radiative recombination effectively. Enhancing radiative recombination in the well using the quaternary AlInGaN MQB EBL also increased the optical output power and optical intensity.  相似文献   

19.
With the aim of establishing the mechanisms for spontaneous recombination and lasing, we have studied InGaN/GaN multiple quantum well heterostructures emitting in the 450 nm region and grown by organometallic vapor-phase epitaxy on silicon substrates using several mechanical stress-reducing AlN/AlGaN inserts. Photoluminescence (PL) excitation spectroscopy, the non-monoexponential nonequilibrium carrier relaxation kinetics, and x-ray diffractometry data indicate significant inhomogeneity of the InGaN solid solution in quantum wells of these structures. The dependences of the position of the photoluminescence spectra on the excitation level and the temperature, the large shift in the photoluminescence, gain, and lasing spectra relative to the absorption edge allow us draw the conclusion that the dominant contribution to spontaneous and stimulated recombination comes from nonequilibrium charge carriers localized in indium-rich InGaN clusters. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 1, pp. 94–101, January–February, 2008.  相似文献   

20.
Blue light emitting diodes (LED) consisting of InGaN/GaN multiple quantum wells (MQWs) have been grown by metal organic chemical vapor deposition (MOCVD) on sapphire. The width of the quantum wells (InGaN) was maintained in the range of 3–5 nm with a barrier of 10–15 nm of GaN. Various diagnostic techniques were employed for the characterization of the InGaN/GaN heterostructure. Carrier concentration depth profile from CV measurements demonstrated the presence of MQWs. The higher value of built-in voltage (15 V) determined from C−2V plot also supported the presence of MQWs as assumed to alter the space-charge region width and hence the intercept voltage. Arrhenius plots due to DLTS spectra from the device revealed at least four energy states (eV) 0.1, 0.12, 0.15 and 0.17, respectively in the quantum wells, with respect to the barrier. Further the photoluminescence spectrum showed an InGaN-based broad band centered at 2.9 eV and the GaN peak at 3.4 eV. A comparison of the PL spectrum with the literature helped to estimate the indium content in the QW (InGaN) and its width to be ∼13% and ∼3 nm, respectively. The results were consistent with the DLTS findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号