首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nonlinear parabolic system is derived to describe compressible miscible displacement in a porous medium. The concentration equation is treated by a mixed finite element method with characteristics (CMFEM) and the pressure equation is treated by a parabolic mixed finite element method (PMFEM). Two-grid algorithm is considered to linearize nonlinear coupled system of two parabolic partial differential equations. Moreover, the $L^q$ error estimates are conducted for the pressure, Darcy velocity and concentration variables in the two-grid solutions. Both theoretical analysis and numerical experiments are presented to show that the two-grid algorithm is very effective.  相似文献   

2.
可压核废料污染问题的数值方法李潜(山东大学数学系,济南250100)国家自然科学基金资助项目.1991年11月4日收到,1992年6月16日收到修改压缩船.一、引言多孔介质中,可压缩核废料污染问题的数学模型是下述抛物型方程组的初边值问题[1]其中p是...  相似文献   

3.
赵卫东 《计算数学》2000,22(1):83-96
1.引言多孔介质二相驱动问题的数学模型是偶合的非线性偏微分方程组的初边值问题.该问题可转化为压力方程和浓度方程[1-4].浓度方程一般是对流占优的对流扩散方程,它的对流速度依赖于比浓度方程的扩散系数大得多的Farcy速度.因此Darcy速度的求解精度直接影响着浓度的求解精度.为了提高速度的求解精度,70年代P.A.Raviat和J.M.Thomas提出混合有限元方法[5].J.DouglasJr,T.F.Russell,R.E.Ewing,M.F.Wheeler[1]-[4],[9],[12]袁…  相似文献   

4.
A modification of a finite element method of Douglas and Roberts for approximating the solution of the equations describing compressible miscible displacement in a porous medium is proposed and analyzed. The pressure is treated by a parabolic mixed finite element method using a Raviart-Thomas space of index rover a quasiregular partition, An extension of the Darcy velocity along Gauss lines is used in the evaluation of the coefficients in the Galerkin procedure for the concentration. A simple computational procedure allows the superconvergence property of the fluid velocity to be retained in our total algorithm.  相似文献   

5.
The incompressible miscible displacement problem in porous media is modeled by a coupled system of two nonlinear partial differential equations, the pressure‐velocity equation and the concentration equation. In this article, we present a mixed finite volume element method for the approximation of pressure‐velocity equation and a discontinuous Galerkin finite volume element method for the concentration equation. A priori error estimates in L(L2) are derived for velocity, pressure, and concentration. Numerical results are presented to substantiate the validity of the theoretical results. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

6.
A low order nonconforming mixed finite element method (FEM) is established for the fully coupled non-stationary incompressible magnetohydrodynamics (MHD) problem in a bounded domain in 3D. The lowest order finite elements on tetrahedra or hexahedra are chosen to approximate the pressure, the velocity field and the magnetic field, in which the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and the magnetic field by $H^1(\Omega)$-conforming finite elements, respectively. The existence and uniqueness of the approximate solutions are shown. Optimal order error estimates of $L^2(H^1)$-norm for the velocity field, $L^2(L^2)$-norm for the pressure and the broken $L^2(H^1)$-norm for the magnetic field are derived.  相似文献   

7.
The mixed finite element method for approximately solving flow equations in porous media has received a good deal of attention in the literature. The main idea is to solve for the head/pressure and fluid velocity (Darcy velocity) simultaneously to obtain a higher order approximation of the fluid velocity. In the case of a diagonal transmissivity tensor the algebraic equations resulting from the discretization can be reduced to a system of algebraic equations for the head/pressure variable alone. This reduction results in a smaller number of unknows to be solved for in an iterative method such as preconditioned conjugate gradient method. The fluid velocity is then obtained from an algebraic relationship. In the case of full transmissivity tensor, the algebraic reduction is more difficult. This paper investigates some algorithms resulting from the modification of the mixed finite element that take advantage of the mixed finite element method for the diagonal tensor case. The resulting schemes are more efficient implementations that maintain the same order of accuracy as the original schemes. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
A new mixed finite element for the Stokes equations is considered. This new finite element is based on a mixed formulation of the Stokes problem in which the gradient of the velocity is introduced and the velocity is approximated by the Raviart-Thomas element [1]. Optimal error estimates are derived. The number of degrees of freedom, for this element, is the lowest possible, and the local conservation of the mass is assured. A hybrid version of the mixed method is also considered. Finally, some numerical results for the incompressible Navier-Stokes equations are presented. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
1引言考虑多孔介质中两相不可压缩可混溶渗流驱动问题,它是由一组非线性耦合的椭园型压力方程和抛物型浓度方程组成:dVV。—一山人V什)gVV却)一q,VEn,(.1)&,,。_.、。。—一。x)_+u·grade-dlv(D(u)grade)一(1-c)q-,xEn,tEJ,(1.2)&”--’”””‘”-”””——-’——,、—’一其中a()一a(x,c)一是(x)/卢(c),J一[0,Ti,DcyR‘为水平油藏区域.方程式(1.l)一(1.2)中各物理量的意义如下:广为流体压力,c为流体的浓度,u为流体的Darer速度,叶为源汇项,/一—。x(q,O),…  相似文献   

10.
A new characteristic mixed element scheme is formulated to solve numerically displacement problems of compressible fluids in porous media. A new mixed finite element method is introduced to solve the pressure equation of parabolic type, in which the mixed element system is symmetric positive definite and the pressure equation is separated from the flux equation. The modified method of characteristics is used to treat convection-dominated diffusion equations of the concentrations. The convergence with optimal accuracy is proved under the general condition. Project supported in part by China State Major Key Project for Basic Researches, Doctoral Station Foundation and TCTPF of China State Education Commission.  相似文献   

11.
A nonlinear system of two coupled partial differential equations models miscible displacement of one incompressible fluid by another in a porous medium. A sequential implicit time‐stepping procedure is defined, in which the pressure and Darcy velocity of the mixture are approximated by a mixed finite element method and the concentration is approximated by a combination of a modified symmetric finite volume element method and the method of characteristics. Optimal order convergence in H1 and in L2 are proved for full discrete schemes. Finally, some numerical experiments are presented. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

12.
研究自然对流换热问题,通过对于空间变量采用有限元离散而对于时间变量用差分离散,导出一种基于混合有限元法的最低阶的差分格式,这种格式可以同时求出流体的速度、温度和压力的数值解,并给出了模拟方腔流的自然换热的数值例子。  相似文献   

13.
Summary We consider mixed finite element approximations of the stationary, incompressible Navier-Stokes equations with slip boundary condition simultaneously approximating the velocity, pressure, and normal stress component. The stability of the schemes is achieved by adding suitable, consistent penalty terms corresponding to the normal stress component and to the pressure. A new method of proving the stability of the discretizations allows, us to obtain optimal error estimates for the velocity, pressure, and normal stress component in natural norms without using duality arguments and without imposing uniformity conditions on the finite element partition. The schemes can easily be implemented into existing finite element codes for the Navier-Stokes equations with standard Dirichlet boundary conditions.  相似文献   

14.
在多孔介质中完全可压缩、可混溶驱动问题的差分方法   总被引:17,自引:0,他引:17  
袁益让 《计算数学》1993,15(1):16-28
用高压泵将水强行注入油层,使原油从生产井排出,这是近代采油的一种重要手段,将水注入油层后,水驱动油层中的石油,这就是两相驱动问题。对可压缩、可混溶问题,其密度实际上不仅依赖于压力而且还依赖于饱和度。其数学模型虽然早就提出,但在数值分析方面,无论在方法上,还是在理论上,出现了实质性困难。到目前为止,仅研究了密度  相似文献   

15.
In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order CrouzeixRaviart type nonconforming rectangular element is taken for approximating space for the velocity and the piecewise constant element for the pressure. The optimal order error estimates for the approximation of both the velocity and the pressure in L2-norm are established, as well as one in broken H1-norm for the velocity. Numerical experiments are given which are consistent with our theoretical analysis.  相似文献   

16.
Summary. A nonlinear Galerkin method using mixed finite elements is presented for the two-dimensional incompressible Navier-Stokes equations. The scheme is based on two finite element spaces and for the approximation of the velocity, defined respectively on one coarse grid with grid size and one fine grid with grid size and one finite element space for the approximation of the pressure. Nonlinearity and time dependence are both treated on the coarse space. We prove that the difference between the new nonlinear Galerkin method and the standard Galerkin solution is of the order of $H^2$, both in velocity ( and pressure norm). We also discuss a penalized version of our algorithm which enjoys similar properties. Received October 5, 1993 / Revised version received November 29, 1993  相似文献   

17.
The miscible displacement of one incompressible fluid by another in a porous medium is considered in this paper. The concentration is split in a first-order hyberbolic equation and a homogeneous parabolic equation within each lime step. The pressure and Us velocity field is computed by a mixed finite element method. Optimal order estimates are derived for the no diffusion case and the diffusion case.  相似文献   

18.
宋怀玲 《应用数学》2005,18(4):610-618
研究了不可压缩油水两相渗透流驱动问题.在扩散矩阵仅是半正定的假设条件下,提出了迎风混合元方法.混合元方法近似压力方程,饱和度方程的对流项用Godunov迎风格式来处理,扩散项则用推广的混合元来逼进,并推导出格式的误差估计.此种格式的优越性表现在两个方面:首先是饱和度方程的扩散矩阵仅是半正定的;二是摒弃了特征格式所限制的周期性条件,更适用于实际问题.  相似文献   

19.
半导体器件瞬态模拟的对称正定混合元方法   总被引:3,自引:3,他引:0  
提出具有对称正定特性的混合元格式求解非稳态半导体器件瞬态模拟问题。提出一个最小二乘混合元方法、一个新的具有分裂和对称正定性质的混合元格式和一个解经典混合元方程的对称正定失窃工格式求解电场位势和电场强度方程;提出一个最小二乘混合元格式求解关于电子与空穴浓度的非稳态对流扩散方程,浓度函数和流函数被同时求解;采用标准的有限元方法求解热传导方程。建立了误差分析理论。  相似文献   

20.
Two-grid mixed finite element method is proposed based on backward Euler schemes for the unsteady reaction-diffusion equations. The scheme combines with the stabilized mixed finite element scheme by using the lowest equal-order pairs for the velocity and pressure. The space two-grid method is also used to reduce the time consuming. The benefits of this approach are to avoid the higher derivative, but to have more favorable stability, and to get the numerical solution of the two unknown variables simultaneously. Stability analysis and error estimates are given in this work. Finally, the theoretical results are verified by the numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号